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Unit 6: Radiation and Fields from Moving Charges

In the previous unit we discussed the propagation of electromagnetic waves, which are solutions to Maxwell’s equations
in the absence of any source charges or currents, i.e., the macroscopic ρ = 0 and the macroscopic j = 0. In this unit
we add back sources to discuss what electromagnetic fields are produced by charges in motion, and how accelerated
charges give rise to radiated electromagnetic waves. In this unit we leave the macroscopic Maxwell equations of unit
5, and the fields and sources will be taken as the microscopic quantities.

Unit 6-1: The Green’s Function for the Wave Equation and the Liénard-Wiechert Potentials

We will work in the Lorenz gauge where the potentials satisfy,

1

c

∂φ

∂t
+ ∇ ·A = 0 (6.1.1)

In this gauge, the inhomogeneous Maxwell equations become (see unit 1),

∇2φ− 1

c2
∂2φ

∂t2
= −4πρ and ∇2A− 1

c2
∂2A

∂t2
= −4π

c
j (6.1.2)

If we can solve the wave equation with a source (i.e., the inhomogeneous wave equation) then we in principle will have
the solution to all electromagnetic problems where the source is a specified function of position and time. To do this
we want to find the Green’s function for the wave equation.

Recall from statics: ∇2φ = −4πρ

The electrostatic Green’s function satisfies: ∇2G(r) = −4πδ(r)

Then the solution for φ from a general source ρ is: φ(r) =
∫
d3r′G(r− r′)ρ(r′) + φ0(r)

where φ0(r) is any solution to the homogeneous equation, ∇2φ0 = 0.

For the case where the system fills all space and we want φ → 0 as |r| → ∞, the electrostatic Green’s function is:

G(r− r′) =
1

|r− r′|
.

For the wave equation:

We want G(r, t; r′, t′) to satisfy the wave equation for a point source at position r′ and time t′,

∇2G(r, t; r′, t′)− 1

c2
∂2G(r, t; r′, t′)

∂2t
= −4πδ(r− r′)δ(t− t′) (6.1.3)

Once we have found the Green’s function, the the solutions for general sources ρ(r, t) and j(r, t) will be given by,

φ(r, t) =

∫ ∞
−∞

dt′
∫ ∞
−∞

d3r′G(r, t; r′, t′) ρ(r′, t′) + φ0(r, t) (6.1.4)

A(r, t) =
1

c

∫ ∞
−∞

dt′
∫ ∞
−∞

d3r′G(r, t; r′, t′) j(r′, t′) + A0(r, t) (6.1.5)

where φ0(r, t) and A0(r, t) are any solutions of the homogeneous wave equation (for example they could describe an
incoming wave).

For the case where the system fills all of space (as opposed to the case where the system is in a finite box), translational
invariance gives,

G(r, t; r′, t′) = G(r− r′, t− t′) (6.1.6)
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and the Green’s function depends only on the distance from the observer at (r, t) and the source at (r′, t′).

If we express G(r, t) in terms of its Fourier transform G̃(k, ω), it will be easy to solve for the Fourier amplitudes G̃.
With

G(r, t) =

∫ ∞
−∞

d3kdω

(2π)4
G̃(k, ω) ei(k·r−ωt) (6.1.7)

then (
∇2 − 1

c2
∂2

∂t2

)
G(r, t) =

∫ ∞
−∞

d3kdω

(2π)4
G̃(k, ω)

(
∇2 − 1

c2
∂2

∂t2

)
ei(k·r−ωt) (6.1.8)

=

∫ ∞
−∞

d3kdω

(2π)4
G̃(k, ω)

(
−k2 +

ω2

c2

)
ei(k·r−ωt) (6.1.9)

=− 4πδ(r)δ(t) = −4π

∫ ∞
−∞

d3kdω

(2π)4
ei(k·r−ωt) (6.1.10)

Equating the Fourier amplitudes on either side of the equation we then get,(
−k2 +

ω2

c2

)
G̃(k, t) = −4π ⇒ G̃(k, t) =

4πc2

c2k2 − ω2
(6.1.11)

Using Fourier transforms, we have converted the partial differential wave equation for G into an algebraic equation
for G̃. This is why Fourier transforms are so useful for linear differential equations!

In the space and time domain, we then have,

G(r, t) =

∫ ∞
−∞

d3kdω

(2π)4

(
4πc2

c2k2 − ω2

)
ei(k·r−ωt) (6.1.12)

The integrand has poles at ω = ±ck.

To evaluate the above, we will use contour integration in the complex ω plane. To do that, we will have to know how
to treat the poles, which lie on the real ω axis. We will treat the poles in such a way that the resulting G(r, t) has
the desired causal behavior, i.e., G(r, t) = 0 for t < 0, so that φ(r, t) and A(r, t) depend only on the sources at earlier
times t′ < t.

We start by evaluating the k part of the integral in Eq. (6.1.12). Since G̃(k, ω) depends only on k = |k|, we write the
integration over k-space in spherical coordinates, where θ is the angle between k and the observer at r,∫ ∞

−∞
d3k eik·rG̃(k, ω) = 2π

∫ π

0

dθ sin θ

∫ ∞
0

dk k2 eikr cos θG̃(k, ω) use µ = − cos θ and dµ = dθ sin θ (6.1.13)

= 2π

∫ 1

−1
dµ

∫ ∞
0

dk k2 eikrµG̃(k, ω) do the integration over µ (6.1.14)

= 4π

∫ ∞
0

dk k2
sin kr

kr
G̃(k, ω) (6.1.15)

Now we do the integration over ω. Plugging in for G̃(k, ω) we get,

G(r, t) = − c
2

π2

∫ ∞
0

dk k2
sin kr

kr

∮
C

dω
e−iωt

(ω − ck)(ω + ck)
(6.1.16)

where the contour C will go along the real ω axis, and then close in the upper or lower half of the complex ω plane,
depending on the sign of t as follows.
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For complex ω = ω1+iω2, the exponential factor in the integral e−iωt = eω2teiω1t. We want this to vanish as |ω2| → ∞
on the infinite semi-circular part of C that closes the contour from the real ω axis, so that the integral over the contour
C will be the same as the integral down the real ω axis. Therefore for t > 0, we must close the contour in the lower
half of the complex ω plane, where ω2 < 0. But for t < 0, we must close the contour in the upper half of the complex
ω plane, where ω2 > 0.

Now we need to decide how to treat the poles at ω = ±ck on the real ω axis. From our discussion of the causal nature
of the atomic polarizability α(ω), we saw that the response will be causal when the poles lie in the lower half of the
complex ω plane. We therefore regard the poles at ω = ±ck as lying just below the real axis, so that they are in the
lower half of the complex ω plane as desired for causality.

The contours C that we take for t < 0 and t > 0 are then as in the sketch below.
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For t < 0, the contour C encloses no poles, so by the Cauchy residue theorem the integral vanishes, and we have
G(r, t) = 0 as desired for causality.

For t > 0, the contour C encloses both the poles, so we evaluate the integral using the Cauchy residue theorem.
Looking at the ω part of the integral in Eq. (6.1.16), we have,

For t > 0:

∮
C

dω
e−iωt

(ω − ck)(ω + ck)
= −2πi

[
e−ickt

2ck
− eickt

2ck

]
= −2π

sin(ckt)

ck
(6.1.17)

The (−) sign in front is because we go around the contour C in a clockwise direction. The first term in the square
brackets is the residue at the pole ω = +ck, while the second term is the residue at the pole ω = −ck.

Using this result in Eq. (6.1.16) we then have,

G(r, t) =
2c

πr

∫ ∞
0

dk sin(kr) sin(ckt) =
c

πr

∫ ∞
−∞

dk

(
eikr − e−ikr

) (
eickt − e−ickt

)
(−4)

(6.1.18)

= − c

2r

∫ ∞
−∞

dk

2π

[
ei(r+ct)k + e−i(r+ct)k − ei(r−ct)k − e−i(r−ct)k

]
(6.1.19)

= − c

2r
[δ(r + ct) + δ(r + ct)− δ(r − ct)− δ(r − ct)] (6.1.20)

In the first step we wrote sine in terms of complex exponentials, sinx = (eix − e−ix)/2i, and used the fact that
the integrand is symmetric in k to write 2

∫∞
0
dk =

∫∞
−∞ dk. In the second step we multiplied through the complex

exponentials, and in the third step we identify the integrals as Dirac delta functions.

Finally, since by definition r = |r| ≥ 0, and we also are computing only for t > 0, then the argument of the delta
function δ(r + ct) can never be zero! So this delta function always vanishes, and we have,

G(r, t) =
c

r
δ(r − ct) (6.1.21)
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Using the general result δ(ax) =
δ(x)

a
we can then write,

G(r, t) =
c

r
δ(r − ct) =

δ(t− r/c)
r

(6.1.22)

and so the Green’s function for the wave equation is,

G(r, t; r′, t′) =


δ

(
t− t′ − |r− r′|

c

)
|r− r′|

for t− t′ > 0

0 for t− t′ < 0

(6.1.23)

We see that G(r, t; r′, t′) 6= 0 only on the light cone that emanates from the point (r′, t′), i.e., when |r− r′| = c(t− t′),
so that a signal leaving point r′ at time t′, and traveling with the speed c, will reach the observer at position r at
time t.

Using this Green’s function, we now have the solution for the potentials from any specified sources ρ(r, t) and
j(r, t),

φ(r, t) = φ0(r, t) +

∫ ∞
−∞

d3r′
∫ t

−∞
dt′

δ (t− t′ − |r− r′|/c)
|r− r′|

ρ(r′, t′) (6.1.24)

A(r, t) = A0(r, t) +
1

c

∫ ∞
−∞

d3r′
∫ t

−∞
dt′

δ (t− t′ − |r− r′|/c)
|r− r′|

j(r′, t′) (6.1.25)

The Liénard-Wiechert Potentials

We can apply the above to the case where the source is a single point charge q moving on the trajectory r0(t),

ρ(r, t) = qδ(r− r0(t)) and j(r, t) = qv(t)δ(r− r0(t)) where v =
dr0
dt

(6.1.26)

Then we can use the delta function in ρ to do the integrals over r′ in Eq. (6.1.24) and get,

φ(r, t) = q

∫ t

−∞
dt′

δ

(
t− t′ − 1

c
|r− r0(t′)|

)
|r− r0(t′)|

(6.1.27)

Because of the r0(t′) term in the argument of the delta function, the t′ dependence of the argument is not of the
simple form t′ − t0, that would allow us to do the integral over t′ in a trivial way. Instead, if we write,

g(t′) ≡ t′ + 1

c
|r− r0(t′)| (6.1.28)

then,

φ(r, t) = q

∫ t

−∞
dt′

δ (t− g(t′))

|r− r0(t′)|
(6.1.29)

Now we transform the integration variable from t′ to g,

φ(r, t) = q

∫ g(t)

−∞
dg

(
dt′

dg

)
δ (t− g(t′))

|r− r0(t′)|
=

q

|r− r0(t′)|
1

(dg/dt′)

∣∣∣∣
t′ such that g(t′) = t

(6.1.30)
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Now

g(t′) = t′ +
1

c

√
[x− x0(t′)]2 + [y − y0(t′)]2 + [z − z0(t′)]2 (6.1.31)

so

dg

dt′
= 1 +

1

c|r− r0(t′)|

[
[x− x0(t′)]

(
−dx0
dt

)
+ [y − y0(t′)]

(
−dy0
dt

)
+ [z − z0(t′)]

(
−dz0
dt

)]
(6.1.32)

= 1− 1

c
n̂(t′) · v(t′) (6.1.33)

where

n̂(t′) ≡ r− r0(t′)

|r− r0(t′)|
is the unit vector pointing from r0(t′) to r (6.1.34)

Thus we have for φ(r, t), and by a similar calculation we have for A(r, t), the Liénard-Wiechert Potentials,

φ(r, t) =
q

|r− r0(t′)| [1− n̂(t′) · v(t′)/ c ]
and A(r, t) =

qv(t′)/c

|r− r0(t′)| [1− n̂(t′) · v(t′)/c ]
(6.1.35)

where t′, called the retarded time, is determined by the condition

t− t′ =
1

c
|r− r0(t′)| (6.1.36)

This is illustrated graphically in the space-time diagram shown below

the trajectory of the charge q passes
through the backwards light cone of
the observer to determine the time t’
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For an observer at r = 0 at time t, the time t′

is determined from the point where the charge’s
trajectory r0(t) passes through the observer’s
backward directed light cone. The velocity and
position of the charge at time t′ determines the
potentials seen by the observer.

A Charge Moving at Constant Velocity

In general, for an arbitrary charge trajectory r0(t), the Liénard-Wiechert Potentials can be difficult to calculate,
because of the difficulty in determining the time t′. However we can do the calculation for the simple case of a charge
moving at constant velocity. We take the charge to be moving along the ẑ axis with the trajectory,

r0(t) = vt ẑ with v =
dr0
dt

= v ẑ (6.1.37)
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For an observer at position r in the xy plane at z = 0, the fields at time t will be determined by the charge at the
earlier time t′ such that,

Za

q *ripped
7 > Y
O

> f

b

x

t− t′ − |r− r0(t′)|
c

= 0 ⇒ t− t′ −
√
r2 + v2t′2

c
= 0

(6.1.38)

⇒ (t− t′)2 = t2 + t′
2 − 2tt′ =

r2 + v2t′
2

c2
(6.1.39)

⇒ (1− v2/c2)t′
2 − 2tt′ + t2 − r2/c2 = 0 (6.1.40)

Let

γ ≡ 1√
1− v2/c2

(6.1.41)

Then the above becomes the quadratic equation in t′,

t′
2 − 2γ2tt′ +

γ2

c2
(c2t2 − r2) = 0 (6.1.42)

We can now solve for t′ using the quadratic formula,

t′ = γ2t ±
√
γ4t2 − γ2t2 + γ2r2/c2 = γ2t ± γ

√
[γ2 − 1]t2 + r2/c2 (6.1.43)

Now use γ2 − 1 =
1

1− v2/c2
− 1 =

v2/c2

1− v2/c2
= γ2

v2

c2
, and we have

t′ = γ2t ± γ

√
γ2
v2

c2
t2 +

r2

c2
= γ2t ± γ2

c

√
v2t2 +

r2

γ2
(6.1.44)

To choose which (±) sign above is correct, consider t = 0. The solution should then give t′ < 0, since t′ is always
earlier than t by causality. Only the (−) sign gives this, so that is the correct solution.

t′ = γ2t − γ2

c

√
vtt2 +

r2

γ2
(6.1.45)

Now we have for the scalar potential,

φ(r, t) =
q

|r− r0(t′)| [1− n̂(t′) · v/c ]
where n̂(t′) ≡ r− r0(t′)

|r− r0(t′)|
(6.1.46)

Here

|r− r0(t′)| =
√
r2 + v2t′2 = c(t− t′) from the condition that determines t′ (6.1.47)

(r− r0(t′)) · v = −r0(t′) · v since r is in the xy plane and v = vẑ, so r · v = 0 (6.1.48)

= −v2t′ since r0(t′) = vt′ (6.1.49)
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Putting the pieces together we get,

φ(r, t) =
q

c(t− t′)
[
1 +

v2t′

c2(t− t′)

] =
q

c(t− t′) +
v2t′

c

=
q

c

[
t−
(

1− v2

c2

)
t′
] (6.1.50)

=
q

c

(
t− t′

γ2

) =
q

c
1

c

√
v2t2 +

r2

γ2

where we used Eq. (6.1.45) (6.1.51)

φ(r, t) =
q√

v2t2 + r2/γ2
(6.1.52)

And by a similar calculation we get,

A(r, t) =
qv

c
√
v2t2 + r2/γ2

=
v

c
φ(r, t) (6.1.53)
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Note, the scalar potential φ at the observer at position r
in the xy plane at time t, when the charge q is at posi-
tion r0(t) = vt ẑ on the ẑ axis, looks almost like the static
Coulomb potential, which would be,

q

|r− r0(t)|
=

q√
v2t2 + r2

(6.1.54)

Instead, it is

q√
v2t2 + r2/γ2

(6.1.55)

This looks like the directions transverse to the direction of the charge’s motion have contracted by a factor γ.

Such considerations led Lorentz to discover the Lorentz transformation before Einstein proposed his theory of relativity!

Note, the above Eqs. (6.1.52) and (6.1.53) dealt with the particular case of an observer in the xy plane at z = 0. But
we can get the general result for an observer at any (x, y, z) by noting that what the observer at height z sees at time
t will be the same as an observer at height z = 0 saw at the earlier time t− z/v. We thus have,

φ(x, y, z, t) = φ(x, y, 0, t− z/v) A(x, y, z, t) = A(x, y, 0, t− z/v) (6.1.56)

After a little bit of algebra, you can show that this general result can be written as,

φ(r, t) =
q√

(r− vt)2 + (r · v/c)2 − (rv/c)2
and A(r, t) =

v

c
φ(r, t) (6.1.57)

Having expressed the potentials for any observer position r = (x, y, z), we can now take the necessary derivatives to
compute the corresponding electric and magnetic fields. After some more algebra we get,

E = −∇φ− 1

c

∂A

∂t
=

q (r− vt) γ−2[
(r− vt)2 + (r · v/c)2 − (rv/c)2

]3/2 → q (r− vt)

|r− vt|3
as v/c→ 0 (6.1.58)

and

B = ∇×A = ∇×
[v
c
φ
]

= −v

c
×∇φ =

v

c
×
[
E +

1

c

∂A

∂t

]
=

v

c
×E (6.1.59)
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where the last step follows since
∂A

∂t
∝ v and so v × ∂A

∂t
= 0. We thus have,

B → q
(v

c

)
× (r− vt)

|r− vt|3
as v/c→ 0 (6.1.60)

So as v/c → 0, the electric field looks just like the static Coulomb field, while the magnetic field looks like the
Biot-Savart law with j = qv δ(r− vt).


