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Unit 6-3: Radiation in the Electric Dipole Approximation

In this section we focus on the electric dipole contribution to the radiation from an oscillating source. Within the
long wavelength (non-relativistic) approximation, this is the leading term, provide the electric dipole moment p does
not vanish.

In the last section we found that, within Approximations (1) and (2), the electric dipole contribution to the vector
potential is,

AE1(r) = −ikpω
eikr

r
where k = ω/c (6.3.1)

Now we will find the fields B and E.

Using ∇× (φF) = (∇φ)× F + φ∇× F we have,

BE1 = ∇×AE1 = −ik
(
∇ eikr

r

)
× pω since pω is a constant, then ∇× pω = 0 (6.3.2)

= −ik
(
ik − 1

r

)
eikr

r
r̂× pω (6.3.3)

= k2
eikr

r

(
1 +

i

kr

)
r̂× pω (6.3.4)

Adding Approximation (3), then in the Radiation Zone, we have kr � 1 and so,

BE1(r) = k2
eikr

r
r̂× pω in the Radiation Zone (6.3.5)

To get the electric field, we use Ampere’s law. Far from the source, where j = 0, Ampere’s law is,

∇×B =
1

c

∂E

∂t
(6.3.6)

For oscillating fields, B(r, t) = Bω(r)e−iωt and E(r, t) = Eωe−iωt, this becomes,

∇×Bω = − iω
c
Eω ⇒ EE1 =

i

k
∇×BE1 since k = ω/c (6.3.7)

Therefore, within Approximations (1) and (2) we have,

EE1 =
i

k
∇×

[
k2

eikr

r

(
1 +

i

kr

)
r̂× pω

]
(6.3.8)

=
i

k

(
∇eikr

)
×
[
k2

r

(
1 +

i

kr

)
r̂× pω

]
+

i

k
eikr∇×

[
k2

r

(
1 +

i

kr

)
r̂× pω

]
(6.3.9)

Considering powers of 1/r in the above expression, the leading term is of order 1/r. When we take the curl of the
expression in the square brackets in the second term, the result is always of order 1/r2 (verify that for yourself!). In
the Radiation Zone approximation, we keep only the leading 1/r term since the next order 1/r2 term will be a factor
1/(kr)� 1 smaller.

Therefore, adding Approximation (3), we get in the Radiation Zone,

EE1(r) =
(
∇eikr

)
×
[
ik

r
r̂× pω

]
= ik r̂ eikr ×

[
ik

r
r̂× pω

]
(6.3.10)
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and so,

EE1(r) = −k2 e
ikr

r
r̂× (r̂× pω) in the Radiation Zone (6.3.11)

If we had not made the Radiation Zone approximation, and worked out all the derivatives in Eq. (6.3.9), we would
get,

EE1(r) = k2
eikr

r

[
pω − r̂ (pω · r̂)− i

kr

(
1 +

i

kr

)(
3r̂ (pω · r̂)− pω

)]
(6.3.12)

In the following, we will stick with the Radiation Zone approximation.

Discussion Question 6.3

Although in the following we will be interested in the Radiation Zone limit, we can also ask about the Near
Field limit, where d� r � λ.

The Near Field limit can be viewed as the limit where kr � 1, and so to leading order it will be the terms
in B and E that have the highest power of 1/kr that dominate. What is the electric field, in the electric
dipole approximation, in this Near Field limit? It should look familiar, can you recognize it? How does the
ratio |B|/|E| go? How does that compare with behavior in the Radiation Zone?

In the Radiation Zone,

EE1(r) = −k2 e
ikr

r
r̂× (r̂× pω)

BB1(r) = k2
eikr

r
r̂× pω

⇒ |EE1| = |BE1| and EE1 ⊥ BE1 (6.3.13)

IF we assume that pω is a real valued vector (later we will see cases where pω is complex valued), then we can choose
coordinates so that pω = pωẑ is aligned along the ẑ axis (if pω were complex, then the real and imaginary parts could
be in different directions, and so we could not align pω along ẑ). In that case we can write EE1 and BE1 in spherical
coordinates,

Ew
r -

Z > r

>
Ei

Pw OT s

b Bw
O

EE1(r) = −k2 pω
eikr

r
sin θ θ̂

BE1(r) = −k2 pω
eikr

r
sin θ ϕ̂

(6.3.14)

To look at the power being radiated by the oscillating current, we now consider the Poynting vector,

SE1(r, t) =
c

4π
Re
[
EE1(r)e−iωt

]
× Re

[
BE1(r)e−iωt

]
(6.3.15)

Recall, it is crucial to take the real parts of the complex expressions, so as to get the real physical fields, before
multiplying.

Re
[
EE1(r)e−iωt

]
= −k2 pω

cos(kr − ωt)
r

sin θ θ̂ (6.3.16)
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Re
[
BE1(r)e−iωt

]
= −k2 pω,

cos(kr − ωt)
r

sin θ ϕ̂ (6.3.17)

So now,

SE1(r, t) =
c

4π
k4 p2ω

cos2(kr − ωt)
r2

sin2 θ r̂ (6.3.18)

SE1 ∼ r̂ ⇒ the energy is flowing radially outwards.

SE1 ∼
1

r2
⇒ energy is conserved.

∮
S

da n̂ · 〈SE1〉 is constant when integrating over the surface of a sphere of any radius R.

But . . . . . . if we did not make the Radiation Zone approximation, then the fields, and hence S, would have terms that
went as higher powers of 1/r. In particular, S would include terms that went like 1/r3, 1/r4, etc. Do these higher
order terms mess up energy conservation? You will have to examine this in a homework problem!

Classically, we are usually only interested in the average energy current,

〈SE1〉 =
1

τ

∫ τ

0

dtSE1(r, t) where τ = 2π/ω is the period of oscillation (6.3.19)

Using 〈cos2(kr − ωt)〉 = 1/2, we get,

〈SE1〉 =
c

8π
k4 p2ω

sin2 θ

r2
r̂ (6.3.20)

The average energy flowing through a differential element of area at spherical angles θ and ϕ is,

dPE1 = r̂ · 〈SE1〉 r2 sin θ dθ dϕ = r̂ · 〈SE1〉 r2 dΩ (6.3.21)

where dΩ = sin θ dθ dϕ is the differential solid angle, and r2 dΩ is the differential surface area.

This then gives for the power cross-section

dPE1

dΩ
= r̂ · 〈SE1〉 r2 =

c

8π
k4 p2ω sin2 θ ∼ ω4 sin2 θ (6.3.22)
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A polar plot of this distribution is shown on the
left. The power distribution is rotationally sym-
metric about the ẑ axis, and so has the shape of
a donut.

Most of the power is directed outwards into the
xy plane ⊥ pω, i.e. dPE1/dΩ is peaked at 90◦.
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The total radiated power is,

PE1 =

∫
dΩ

dPE1

dΩ
=
c k4 p2ω

8π
2π

∫ π

0

dθ sin θ sin2 θ the integral

∫ π

0

dθ sin3 θ = 4/3 (6.3.23)

=
c k4 p2ω

3
=
p2ω ω

4

3 c3
∼ ω4 (6.3.24)

The power radiated goes like the fourth power of the frequency.

Why is the sky blue?

We can now give Lord Rayleigh’s explanation for why the sky is blue!

When you look up at the sky, you are seeing the indirect light of the sun, i.e. the light emitted by the molecules in
the atmosphere as they oscillate, and so radiate, due to the electric field they feel from the direct light of the sun.

The power of this radiated indirect light is P ∼ ω4 p2ω.

Now p = αE with α ≈ e2

m

1

ω2
0 − ω2 − iωγ

For molecules in the atmosphere (the most common is N2), the resonant frequency ω0 for electronic excitations
is typically higher than the visible spectrum, while for rotational excitations it is typically lower than the visible
spectrum. So in the visible spectrum, α ≈ constant, with little dependence on frequency ω. The dominant ω
dependence of the power P is from the ω4 factor.

So it is the light at higher frequencies that radiates the most.

Since light from the sun is “white light,” it has components of all frequencies. Because of the ω4 factor, of these
different frequencies, it is the higher frequencies are scattered the most, and so they dominate the indirect light that
we see.

Since it is blue that is the highest frequency in the visible spectrum, the indirect light we see when we look up at the
sky is blue!

In contrast, when we look at a sunrise or sunset, we are looking into the sun and see the direct light. In this case
what we see is dominated by those frequencies that are scattered the least. These are the lower frequencies. Hence
sunrises and sunsets look red!


