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Unit 7-2: Maxwell’s Equations in Relativistic Form

The theory of electromagnetism is intimately tied to the theory of special relativity, and indeed formed the motivation
for Einstein to develop his theory. From our study of electromagnetism, we can easily see several hints of this.

Consider a charged particle q moving with a constant velocity v. The charge feels a Lorentz force,

F = qE + q
v

c
×B (7.2.1)

The magnetic part of the force is determined by the charge’s velocity v. But what is that velocity measured with
respect to? According to special relativity, there is no absolute “rest frame.” Or alternatively, there is no way to
determine a unique value of the charge’s velocity – as we look at the moving charge in different inertial frames of
reference, its velocity will change, and the force on it from the magnetic field will change. Indeed, if we move to the
inertial frame of reference in which the charge is at rest, then there is no magnetic force on it at all!

Similarly, the values of the electromagnetic fields themselves depend on which inertial frame of reference we are in.
Consider an infinite straight line with fixed charge per unit length λ, which is at rest in inertial frame K. In the frame
K there is an electric field E pointing outward in the cylindrical radial direction from the line charge. There is no
magnetic field B = 0.

Now make a transformation to an inertial frame of reference K′ that is moving with velocity v in a direction parallel
to the line charge, as seen by K. In this frame, the line charge is moving with velocity −v, and so carries a current
I = −λv. This current gives rise to a magnetic field B′ that circulates around the line charge, as well as a radially
outward pointing E′.

Clearly E and B must change from one inertial frame of reference to another. In this section we therefore see how to
recast electromagnetism in a form that is manifestly compatible with special relativity. In doing so, we will see that
E and B should not be viewed as separate quantities, but rather are both parts of a new relativistic field tensor.

4-Current

Consider the total charge ∆Q contained in a small box of volume ∆V . ∆Q is a Lorentz invariant scalar. In another
inertial reference frame, even though the shape of the box may deform, the total charge within the box must stay the
same.

Consider the frame of reference in which this charge ∆Q is at rest. We will denote quantities measured in this frame
by a circle over the quantity. Let ∆V̊ be the volume of the box in this rest frame, and ρ̊ the charge density. Then,

∆Q = ρ̊∆V̊ (7.2.2)

By definition, ρ̊ is a Lorentz invariant scalar, because it is defined as the density in the charge’s rest frame. Now
transform to another inertial frame of reference moving with velocity v with respect to the rest frame. In this new
frame, ∆Q stays the same since it is a Lorentz invariant scalar. The volume becomes,

∆V =
∆V̊

γ
(7.2.3)

since the length of the box in the direction parallel to v contracts by a factor 1/γ, while the transverse directions stay
the same. Thus the charge density in this new frame of reference is,

ρ =
∆Q

∆V
=

∆Q

∆V̊
γ = ρ̊ γ (7.2.4)

The current density in this new frame is j = ρv = (ρ/γ)(γv) = ρ̊u, where u is the spatial parts of the 4-velocity.

We therefore define the 4-current as,

jµ ≡ (j, icρ) = ρ̊ (u, icγ) = ρ̊ uµ using ρ = ρ̊ γ and j = ρ̊u (7.2.5)



2

Since ρ̊ is a Lorentz invariant scalar, and uµ is a 4-vector, so jµ is a 4-vector.

We can now write the law of charge conservation as,

∇ · j +
∂ρ

∂t
=

∂jµ
∂xµ

= 0 (7.2.6)

4-Potential

The equations for the electromagnetic potentials in the Lorenz gauge are,(
∇2 − 1

c2
∂2

∂t2

)
A = −4π

c
j (7.2.7)

(
∇2 − 1

c2
∂2

∂t2

)
φ = −4πρ = −4π

c
(−i)j4 ⇒

(
∇2 − 1

c2
∂2

∂t2

)
iφ = −4π

c
j4 (7.2.8)

As we demonstrated above, the wave equation operator is the Lorentz invariant scalar differential operator ∂2/∂x2ν .

We now define the 4-potential

Aµ ≡ (A, iφ) (7.2.9)

Eqs. (7.2.7) and (7.2.8) then become,(
∇2 − 1

c2
∂2

∂t2

)
Aµ =

∂2Aµ
∂x2ν

= −4π

c
jµ (7.2.10)

Since ∂2/∂x2ν is a Lorentz invariant scalar, and jµ is a 4-vector, it follows that Aµ must be a 4-vector.

The Lorenz gauge condition now becomes,

∇ ·A +
1

c

∂φ

∂t
=

∂Aµ
∂xµ

= 0 (7.2.11)

Since Aµ and ∂/∂xµ are both 4-vectors, their inner product is a Lorentz invariant scalar. We thus see that if the
potentials obey the Lorenz gauge condition in one inertial frame of reference, then they will obey the Lorenz gauge
condition in all inertial frames of reference, since ∂A′µ/∂x

′
µ = ∂Aµ/∂xµ is a Lorentz invariant scalar.

We have thus completely recast Maxwell’s equations, written in terms of the vector and scalar potentials A and φ,
into a relativistic formulation written in terms of the 4-vectors Aµ and jµ. We now want to see how to formulate the
electric and magnetic fields in a relativistic way.

The Field Strength Tensor

The magnetic field is obtained from the vector potential by,

Bi =
∂Ak
∂xj

− ∂Aj
∂xk

with i, j, k a cyclic permutation of 1,2,3 (7.2.12)

The electric field is obtained from the scalar and vector potentials by,

Ei = − ∂φ
∂xi
− ∂Ai

c ∂t
= i

(
∂A4

∂xi
− ∂Ai
∂x4

)
(7.2.13)

We therefore define the field strength tensor,

Fµν ≡
∂Aν
∂xµ

− ∂Aµ
∂xν

= −Fνµ (7.2.14)
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Fµν is the 4 dimensional analog of the curl of a 3-vector. It is an antisymmetric 2nd rank tensor. In general the
analog of curl (or cross product), in any dimension higher than 3, is such an antisymmetric 2nd rank tensor.

In 3 dimensions, the analogous antisymmetric 2nd rank tensor (∂Ak/∂xj)−(∂Aj/∂xk) has 3 independent components,
which can thus be associated with the three components of the magnetic field vector B (actually a psuedovector). But
in 4 dimensions, the antisymmetric 2nd rank tensor Fµν = (∂Aν/∂xµ)− (∂Aµ/∂xν) has 6 independent components,
and so cannot be associated with any 4-vector (or 4-psuedovector). However, the 6 independent components of Fµν
are just the right number of components to represent the electric and magnetic field 3-vectors!

From Eqs. (7.2.14) and (7.2.9), or equivalently from Eqs. (7.2.12) and (7.2.13) we get,

Fµν =



0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE1 iE2 iE3 0


(7.2.15)

Fµν is a 2nd rank 4-tensor. To see how it transforms under a Lorentz transformation a(L), we note,

F ′µν =
∂A′ν
∂x′µ

−
∂A′µ
∂x′ν

Use A′µ = aµσAσ and
∂

∂x′µ
= aµλ

∂

∂xλ
since both are 4-vectors (7.2.16)

and so

F ′µν = aνλaµσ
∂Aλ
∂xσ

− aµσaνλ
∂Aσ
∂xλ

= aµσaνλ

(
∂Aλ
∂xσ

− ∂Aσ
∂xλ

)
= aµσaνλFσλ (7.2.17)

The Lorentz transformation law for an nth rank 4-tensor is similarly defined as,

T ′µ1µ2µ2...µn
= aµ1ν1aµ2ν2aµ3ν3 . . . aµnνnTν1ν2ν2...νn (7.2.18)

From Eq. (7.2.17) we can get how the electric and magnetic fields E and B transform when going from one inertial
frame of reference to another. We will come back to that at the end of this section.

Maxwell’s Equations

Finally we want to write Maxwell’s equations, using our new field strength tensor Fµν to represent the fields E and
B. Note, Maxwell’s equations are 1st order linear partial differential equations for the fields.

Maxwell’s inhomogeneous equations

It is easy to find the proper equation for the inhomogeneous Maxwell’s equations. These are,

∇×B− 1

c

∂E

∂t
=

4π

c
j and ∇ ·E = 4πρ (7.2.19)

The first, Ampere’s law, is a 3-vector equation and so represents 3 scalar equations. The second, Gauss’ law, is a
scalar equation. So altogether there are 4 inhomogeneous equations, the same number of components as a 4-vector!
What 1st order linear differential equation for a 4-vector can we construct from the 2nd rank 4-tensor Fµν? The
natural thing to guess is the inner product of the 4-gradient ∂/∂xν with Fµν . Using the definition of Fµν as the “curl”
of Aµ, as in Eq. (7.2.14), we have,

∂Fµν
∂xν

=
∂

∂xν

(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
=

∂2Aν
∂xν∂xµ

− ∂2Aµ
∂x2ν

=
∂

∂xµ

(
∂Aν
∂xν

)
− ∂2Aµ

∂x2ν
= 0− ∂2Aµ

∂x2ν
(7.2.20)

where we used the fact that Aν obeys the Lorenz gauge condition and so ∂Aν/∂xν = 0. But from Eq. (7.2.10) we
have, ∂2Aµ/∂x

2
ν = −(4π/c)jµ. We therefore conclude that the inhomogeneous Maxwell’s equations can be written in
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terms of the field strength tensor as,

∂Fµν
∂xν

=
4π

c
jµ gives Maxwell’s inhomogeneous equations (7.2.21)

Note, we can directly show that ∂Fµν/∂xν is a 4-vector, by looking how it transforms under a Lorentz transformation.

∂F ′µν
∂x′ν

= aµσaνλaντ
∂Fσλ
∂xτ

(7.2.22)

which follows since Fµν transforms as a 2nd rank tensor, and
∂

∂xν
transforms as a 4-vector.

But aνλ = a−1λν since the transpose of the matrix is its inverse. Then aνλaντ = a−1λν aντ = δλτ . So we have,

∂F ′µν
∂x′ν

= aµσaνλaντ
∂Fσλ
∂xτ

= aµσδλτ
∂Fσλ
∂xτ

= aµσ
∂Fσλ
∂xλ

(7.2.23)

which is just the transformation law for a 4-vector.

Maxwell’s homogeneous equations

We now wish to express the homogeneous Maxwell’s equations in terms of Fµν . This is a little trickier, and we will
show two different, but equivalent, ways to do it. The homogeneous Maxwell’s equations are,

∇×E +
1

c

∂B

∂t
= 0 and ∇ ·B = 0 (7.2.24)

These consist of one 3-vector equation and one scalar equation, representing a total of 4 scalar equations.

From the field strength tensor Fµν we can construct a 3rd rank 4-tensor,

Gµνλ =
∂Fµν
∂xλ

+
∂Fλµ
∂xν

+
∂Fνλ
∂xµ

(7.2.25)

In each term, the indicies are a cyclic permutation of the indicies in the preceding term.

This 3rd rank tensor transforms as,

G′µνλ = aµσaντaλη Gστη (7.2.26)

In principle, Gµνλ has 43 = 64 components. However we can show that Gµνλ is antisymmetric in the exhange of any
two of its indices. We show this by making use of the fact that Fµν = −Fνµ is antisymmetric,

Gµνλ =
∂Fµν
∂xλ

+
∂Fλµ
∂xν

+
∂Fνλ
∂xµ

= −∂Fνµ
∂xλ

− ∂Fµλ
∂xν

− ∂Fλν
∂xµ

= −Gνµλ = −Gµλν = −Gλνµ (7.2.27)

Since Gµνλ is antisymmetric in the exchange of any of its two indices, it is only non-zero when all three indices are
different. Since each index can take only the values 1,2,3 or 4, there are only 4 independent components,

G412, G413, G423, G123 (7.2.28)

All the other components either vanish or are ± one of the above. These 4 independent components are just the right
number to give the 4 homogeneous Maxwell’s equations! They can be written as,

Gµνλ = 0 gives Maxwell’s homogeneous equations (7.2.29)

To see that Gµνλ must indeed vanish, we can substitute into Gµνλ the definition of Fµν in terms of the Aµ. We get,

Gµνλ =
∂Fµν
∂xλ

+
∂Fλµ
∂xν

+
∂Fνλ
∂xµ

=
∂2Aν
∂xλ∂xµ

− ∂2Aµ
∂xλ∂xν

+
∂2Aµ
∂xν∂xλ

− ∂2Aλ
∂xν∂xµ

+
∂2Aλ
∂xµ∂xν

− ∂2Aν
∂xµ∂xλ

(7.2.30)
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Since the order in which we take the derivatives does not matter, i.e. ∂/∂xλ∂xµ = ∂/∂xµ∂xλ we see that all the
terms cancel in pairs, and so Gµνλ = 0.

One can show that,

G123 = ∇ ·B = 0 and G412 = −i
[
∇×E +

1

c

∂B

∂t

]
z

= 0 (7.2.31)

Similarly, G413 = 0 and G423 = 0 give the y and x components of Faraday’s law.

There is another, more common, way to write the homogeneous Maxwell’s equations. This is obtained by noting
that we can get the homogeneous equations from the inhomogeneous equations by taking the sources ρ = j = 0 and
making the substitutions B→ −E and E→ B. Making these substitutions within the field strength tenser Fµν then
defines the dual field strength tensor

F̃µν =



0 −E3 E2 −iB1

E3 0 −E1 −iB1

−E2 E1 0 −iB3

iB1 iB2 iB3 0


(7.2.32)

in terms of which the homogeneous Maxwell’s equations can then be written as,

∂F̃µν
∂xν

= 0 gives Maxwell’s homogeneous equations (7.2.33)

To make our definition of F̃µν a bit more formal (so as to see that it is an appropriate 4-tensor), we define the 4
dimensional analog of the Levi-Civita symbol,

εµνλσ =


+1 if µνλσ is an even permutation of 1234

−1 if µνλσ is an odd permutation of 1234

0 otherwise

(7.2.34)

In terms of εµνλσ one can show that,

F̃µν =
1

2
εµνλσ Fλσ (7.2.35)

One can show that the dual field strength tensor F̃µν is really a 2nd rank psuedo 4-tensor – it transforms under a Lorentz
transformation just like a 2nd rank tensor, but it transforms with the wrong sign under a parity transformation.

From Fµν and F̃µν we can construct two Lorentz invariant scalars (actually one scalar, and one psuedo-scalar). These
are,

1

2
FµνFµν = B2 − E2 and − 1

4
Fµν F̃µν = B ·E (7.2.36)

Thus B2 − E2 and B ·E have the same value in all inertial frames of reference.

From the above we can conclude that if E ⊥ B (so that B ·E = 0), and |E| = |B| (so that B2−E2 = 0) in one frame
of reference, then this is also so in all inertial frames of reference. Thus the key features of electromagnetic waves in
a vacuum, that E ⊥ B and the fields have equal magnitudes, hold in all inertial frames of reference.

Also, if E ·B = 0 in one frame of reference, and E2 > B2 in that frame, then there exists a frame in which B′ = 0 and
E′

2
= E2 −B2. And if E ·B = 0 in one frame and B2 > E2 in that frame, then there exists a frame in which E′ = 0
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and B′
2

= B2 − E2. These conditions tell us when it is possible to make a Lorentz transformation and completely
eliminate one of the fields E or B.

Transformation Law for Electric and Magnetic Fields

From Eq. (7.2.17) we can derive the transformation laws for the electric and magnetic fields under a Lorentz trans-
formation.

F ′µν = aµσaνλ Fσλ = aµσFσλa
t
λν or more symbolically [F ′] = [a] · [F ] · [at] (7.2.37)

In the second way we have written the transformation law for Fµν in the form of a matrix multiplication, in the same
form as a similarity transformation for a 3× 3 matrix under a rotation of the spatial coordinates.

For a transformation from inertial frame K to inertial frame K′, where K′ moves with velocity vx̂ as seen by K, the
above gives,

E′1 = E1 B′1 = B1

E′2 = γ
(
E2 −

v

c
B3

)
B′2 = γ

(
B2 +

v

c
E3

)
E′3 = γ

(
E3 +

v

c
B2

)
B′3 = γ

(
B3 −

v

c
E2

) (7.2.38)

Note that, unlike 4-vectors where it is the spatial component parallel to the direction of relative motion that contracts,
while the directions transverse to the relative motion stay unchanged, for the fields E and B it is the components
in the directions transverse to the relative motion that contract, while the component parallel to the relative motion
stays unchanged. This is because the transformation law for E and B comes from the transformation law of the 2nd
rand tensor Fµν , which is different from that of a 4-vector.


