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Unit 7-3: Relativistic Kinematics

In this section we discuss how to formulate the equations of motion for particles in a relativistic way. This will lead
us to a relativisitc understanding of momentum and energy.

4-Momentum

We already saw the 4-velocity uµ of a particle. Now we define the 4-momentum,

pµ = muµ = (mγv, imcγ) 4-momentum (7.3.1)

where m is the mass of the particle in the frame of reference in which the particle is at rest (the “rest mass”). The
4-momentum is a 4-vector since uµ is a 4-vector and mass m is a Lorentz invariant scalar. Remember, the speed v

that enters the factor γ = 1/
√

1− v2/c2 in the above expression is the ordinary velocity of the particle, v = |dr/dt|.

The square of the 4-momentum is,

p2µ = m2u2µ = −m2c2 (7.3.2)

where we used the result u2µ = −c2 from Notes 7-1.

4-Force, or Minkowski Force

Now we want to specify the relativistic analog of force. This is the 4-force, or also called the Minkowski force. We
will define it as,

Kµ = (K, iK0) Minkowski force (7.3.3)

where we will have to determine how the spatial part K and the temporal part iK0 are related to familiar quantities
from Newtonian mechanics.

We will assume an analog of Newton’s 2nd law of motion,

m
d2xµ
ds2

= Kµ recall, ds is the proper time interval, ds = dt/γ (7.3.4)

With dxµ/ds = us, and muµ = pµ, this gives,

m
d2xµ
ds2

= m
duµ
ds

=
dpµ
ds

= Kµ (7.3.5)

Now we had,

p2µ = −m2c2 ⇒ 1

2

d

ds
(p2µ) = pµ

dpµ
ds

= pµKµ = 0 since p2µ is a constant (7.3.6)

⇒ pµKµ = mγv ·K−mcγK0 = 0 ⇒ K0 =
v

c
·K (7.3.7)

So once we have determined the spatial part K, we will then know the temporal part K0.

We will define the familiar Newtonian “3-force” F by,

dp

dt
= F where the Newtonian momentum p is identified as the space components of pµ (7.3.8)

Then, from the spatial part of Eq. (7.3.5) and using ds = dt/γ, we have,

K =
dp

ds
= γ

dp

dt
= γF ⇒ K = γF and so K0 = γ

v

c
· F (7.3.9)
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Kinetic Energy

Consider now the 4th component of our relativistic Newton’s equation (7.3.5),

m
du4
ds

= m
d(icγ)

ds
= iK0 = iγ

v

c
· F ⇒ md(γ) = d(mγ) = γ

v

c2
· F ds =

v

c2
· F dt =

F · dr
c2

(7.3.10)

where dr = vdt. Now we know that F · dr = dW , the work done by the force F in moving the particle dr. So,

d(mγc2) = F · dr = dW (7.3.11)

So by the work-energy theorem of mechanics, we now associate d(mγc2) as the change in the kinetic energy of the
particle. And so we conclude,

E = mγc2 is the relativistic form for the particle’s kinetic energy (7.3.12)

Comparing to the 4-momentum, pµ = (mγv, imcγ), we see that we can write the 4-momentum as,

pµ =

(
p,

iE

c

)
which is thus also called the energy-momentum 4-vector (7.3.13)

Written this way, and using Eq. (7.3.2) we have,

p2µ = p2 − E2/c2 = −m2c2 ⇒ E2 = (pc)2 + (mc2)2 (7.3.14)

So the temporal component of the 4-momentum is just (i/c) times the relativistic kinetic energy of the particle. We
thus have,

p = mγv is the relativistic momentum; E = mγc2 is the relativistic kinetic energy (7.3.15)

Now using our expression for γ we have,

E = mγc2 =
mc2√
1− v2

c2

(7.3.16)

For a particle moving non-relativistically, with v � c, we can expand the square root to get,

E ' mc2
(

1 +
1

2

v2

c2

)
= mc2 +

1

2
mv2 (7.3.17)

The second term on the right hand side is just the usual Newtonian kinetic energy, 1
2mv

2. The first term, mc2, is
referred to as the “rest mass energy.”

For non-relativistic particles, if particles are neither created nor destroyed, and each particle i that enters an interaction
leaves with the same mass mi that it entered with, then the rest mass before the interaction will equal the rest mass
after the interaction, and all the interesting effects required by energy conservation will be governed by the non-
relativistic kinetic energy. However, when particles change their nature, such as in the nuclear fission reaction

236U → 92Kr + 141Ba (7.3.18)

then considerable rest mass energy can be involved.

We thus see that our relativistic Newton’s equation of motion,

dpµ
ds

= Kµ (7.3.19)



3

is not only the analog of Newton’s 2nd law of motion (which comes from the spatial components) but also gives the
work-energy theorem (from the temporal component).

The above results are very aesthetically pleasing! But you might ask, how do we know that the correct thing to do
is to define the ordinary Newtonian momentum as the spatial parts of the 4-momentum pµ, i.e. take p = mγv?
Why shouldn’t we keep momentum as the familiar mv? The answer has to do with momentum conservation. If
momentum is conserved in one inertial frame of reference, we would want it to be conserved in all inertial frames of
reference (otherwise, we could distinguish between different inertial frames of reference, and that would violate one
of the fundamental assumptions of special relativity).

Suppose we used the familiar mv as the momentum. If momentum is conserved for some collection of particles, we
would then have,∑

i

mivi(t1) =
∑
i

mivi(t2) for any times t1 and t2 (7.3.20)

Note, the individual particle velocities vi are not generally constant, but the above sum must be.

Now if the above holds in inertial frame K, and we now transform to another frame K′ moving with velocity w with
respect to K, then we can apply the transformation laws for velocity (see Griffiths example 12.6, for example) to
compute the velocities v′

i of each of the particles in inertial frame K′. We would then generally find that,∑
i

miv
′
i(t

′
1) 6=

∑
i

miv
′
i(t

′
2) for any times t′1 and t′2 (7.3.21)

This results from the complicated transformation laws for velocities, where v′
i will depend on how much of vi is

oriented parallel to w and how much of vi is oriented perpendicular to w. Thus momentum would not generally be
conserved in the frame K′.

However if we use pi = miγivi as the momentum of particle i, then momentum conservation would be given by the
spatial components of,

ptotalµ (t1) =
∑
i

pµi(t1) =
∑
i

pµi(t2) = ptotalµ (t2) for any times t1 and t2 (7.3.22)

The temporal component of the above gives energy conservation!

Now if the above holds in the inertial frame K, then when we transform to the frame K′, both ptotalµ (t1) and ptotalµ (t2)
will transform exactly the same way since they are both 4-vectors. Thus momentum and energy conservation will
hold also in K′.

Thus we see that p = mγv is intimately related to momentum conservation. The fact that kinetic energy E is given
by the temporal component of the energy-momentum 4-vector pµ shows that there is a deep connection between
conservation of energy and conservation of momentum.

The Lorentz Force

We have as the equation of motion of a particle,

dpµ
ds

= Kµ (7.3.23)

We now ask, for a charged particle, what is the Kµ that represents the Lorentz force? And how can we write it in a
Lorentz invariant way? Will there be any relativistic corrections to F = qE + q(v/c)×B?

Kµ should depend on the fields Fµν and the charge’s trajectory xµ(s). As v→ 0, we must have K = γF→ F = qE.

Kµ can’t depend explicitly on xµ, as it should be independent of where we put the origin of our coordinates. So Kµ

can depend on the charge’s trajectory only via the derivatives, ẋµ, ẍµ,
...
xµ, etc.
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As v → 0, we know that K → qE does not depend on the acceleration or higher time derivatives of the charge’s
motion, so Kµ cannot depend on ẍµ,

...
xµ, or higher derivatives.

Thus Kµ can depend only on Fµν and ẋµ. We need to form a 4-vector out of these quantities that is linear in the
fields Fµν and is proportional to the charge q. The only possibility is,

q f(ẋ2µ)Fµν ẋν where f(·) is an as yet unknown function. (7.3.24)

But ẋ2µ = u2µ = −c2 is a constant. So f(ẋ2µ) is a constant, and we will choose it to be 1/c. This gives,

Kµ =
q

c
Fµν ẋν as the only possibility to represent the Lorentz force. (7.3.25)

This would then give for the force,

F =
1

γ
K (7.3.26)

For the ith spatial component we have,

Fi =
1

γ
Ki =

q

γc
(Fij ẋj + Fi4ẋ4) =

q

γc

(
∂Aj
∂xi
− ∂Ai
∂xj

)
ẋj +

q

γc
(−iEi)(icγ) (7.3.27)

Now, noting that the term involving the derivatives of the Ai give the magnetic field, and using for the spatial
components of the 4-velocity ẋj = γvj , we have,

Fi =
q

γc
(εijkBk γ vj) +

q

γc
Ei c γ = qEi + q εijk

vj
c
Bk (7.3.28)

or in vector form,

F = qE + q
v

c
×B (7.3.29)

Thus the Lorentz force is exactly given by K/γ with Kµ as in Eq. (7.3.25).

There are no relativistic corrections to the Lorentz force, and the Lorentz force has exactly the same form in all
inertial frames of reference!


