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Unit 7-5-S: The Relativistic Maxwell Stress Tensor

Consider the 2nd rank symmetric 4-tensor, constructed from the field strength tensor Fµν by,

Tµν =
1

4π

[
FµλFλν −

1

4
δµνFλσFσλ

]
(7.5.S.1)

Let us evaluate the pieces,

FµλFλν =



0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE1 iE2 iE3 0





0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE1 iE2 iE3 0


(7.5.S.2)

=



−B2
3 −B2

2 + E2
1 B1B2 + E1E2 B1B3 + E1E3 −iE2B3 + iE3B2

B1B2 + E1E2 −B2
3 −B2

1 + E2
2 B3B2 + E3E2 −iE3B1 + iE1B3

B1B3 + E1E3 B3B2 + E3E2 −B2
2 −B2

1 + E2
3 −iE1B2 + iE2B1

−iE2B3 + iE3B2 −iE3B1 + iE1B3 −iE1B2 + iE2B1 E2
1 + E2

2 + E2
3


(7.5.S.3)

And from the trace of the above matrix we get

1

4
FλσFσλ =

1

2

[
E2 −B2

]
(7.5.S.4)

Putting the pieces together we get

Tµν =
1

4π



E2
1 +B2

1 − 1
2 [E2 +B2] E1E2 +B1B3 E1E3 +B1B3 −i(E×B)1

E1E2 +B1B2 E2
2 +B2

2 − 1
2 [E2 +B2] E2E3 +B2B3 −i(E×B)2

E1E3 +B1B3 E2E3 +B2B3 E2
3 +B2

3 − 1
2 [E2 +B2] −i(E×B)3

−i(E×B)1 −i(E×B)2 −i(E×B)3
1
2 [E2 +B2]


From which we can identify the components as,

Tµν =



T11 T12 T13 −icΠ1

T21 T22 T23 −icΠ2

T23 T23 T33 −icpΠ3

−icΠ1 −icΠ2 −icΠ3 u


(7.5.S.5)

where u is the electromagnetic energy density, Π is the electromagnetic momentum density, and Tij is the Maxwell
stress tensor. Thus we see that these are all different parts of a single symmetric 2nd rank 4-tensor.

Since Tµν is a 4-tensor, we can get a 4-vector by taking its inner product with the 4-gradient,
∂Tµν
∂xν

. Consider the

temporal component of this 4-vector,

∂T4ν
∂xν

=

(
∇,

∂

ic∂t

)
· (−icΠ, u) = −ic∇ ·Π +

∂u

ic∂t
= − i

c

(
c2∇ ·Π +

∂u

∂t

)
= − i

c

(
∇ · S +

∂u

∂t

)
(7.5.S.6)
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where S = c2Π is the Poynting vector. From our discussion of energy conservation in Notes 4-1 we know that,

∇ · S +
∂u

∂t
= −∂umech

∂t
(7.5.S.7)

where umech is the density of mechanical energy (i.e. kinetic energy) of the charges. Thus we have,

∂T4ν
∂xν

=
i

c

∂umech

∂t
(7.5.S.8)

Consider now the spatial components,

∂Tiν
∂xν

=

(
∇,

∂

ic∂t

)
· (Tij , −icΠi) = [∇ ·

↔
T]i −

∂Πi

∂t
(7.5.S.9)

From our discussion of momentum conservation in Notes 4-2 we know that,

∇ ·
↔
T− ∂Π

∂t
=
∂Πmech

∂t
(7.5.S.10)

where Πmech is the density of mechanical momentum of the charges.

Consider the right hand sides of Eqs. (7.5.S.8) and (7.5.S.10). From Notes 4-1 we know that,

i

c

∂umech

∂t
=
i

c
E · j (7.5.S.11)

And from Notes 4-2 we know that,

∂Πmech

∂t
= ρE +

1

c
j×B (7.5.S.12)

These terms are just the temporal and spatial components of 1
cFµνjν , as we see as follows. With,

Fµν =



0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE1 iE2 iE3 0


and jµ = (j, icρ) (7.5.S.13)

we have for the temporal component,

1

c
F4νjν =

i

c
E · j (7.5.S.14)

And for the spatial x-component we have,

1

c
F1νjν =

1

c
(B3j2 −B2j3 + cρE1) =

(
j

c
×B

)
1

+ ρE1 (7.5.S.15)

We thus conclude that energy and momentum conservation can be written in a relativistic form as,

∂Tµν
∂xν

=
1

c
Fµνjν (7.5.S.16)

Since the above is an equality between two 4-vectors, we know that each side of this equation transforms the same way
under a Lorentz transformation. We can thus conclude that if energy and momentum are conserved in one inertial
frame of reference, they must be conserved in all inertial frames of reference.
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As an alternative way to derive the above, consider the right hand sides of Eqs. (7.5.S.8) and (7.5.S.10). Since these
are the temporal and spatial parts of ∂Tµν/∂xν , we know they constitute a 4-vector,

∂

∂t

(
Πmec,

iumec

c

)
=

1

γ

∂

∂s

(
Πmec,

iumec

c

)
where ds = dt/γ is the proper time interval (7.5.S.17)

This looks almost like ∂/∂s of the energy-momentum 4-vector except for two things: the prefactor of 1/γ, and the
fact that Πmech and umec are densitites. To see the meaning of this 4-vector, consider the total momentum pmech and
total energy Emech of the charges contained in a small box of volume ∆V . This does give a 4-vector,

d

ds

(
pmech,

iEmech

c

)
= ∆V

∂

∂s

(
Πmech,

iumech

c

)
(7.5.S.18)

So from this we see that,

1

γ

∂

∂s

(
Πmec,

iumec

c

)
=

1

γ∆V

d

ds

(
pmech,

iEmech

c

)
=

1

∆V̊

d

ds

(
pmech,

iEmech

c

)
(7.5.S.19)

where ∆V̊ is the volume of the box in the rest frame of the charge it contains (see the discussion of the 4-current in
Notes 7-2).

Now, dpµ/ds = Kµ is the 4-force, which in this case is the 4-Lorentz force Kµ = (∆Q/c)Fµνuν , where ∆Q is the
charge in the box ∆V , and uν is its 4-velocity. Then we have,

1

∆V̊

d

ds

(
pmech,

iEmech

c

)
=

1

V̊
Kµ =

1

c

∆Q

∆V̊
Fµν uν =

1

c
Fµν ρ̊ uν =

1

c
Fµν jν (7.5.S.20)

where from Notes 7-3 we used ρ̊ = ∆Q/∆V̊ , and jν = ρ̊uν .

Thus we conclude,

∂

∂t

(
Πmech,

iumech

c

)
=

1

c
Fµν jν (7.5.S.21)


