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Unit 2-2: The Image Charge Method

We now discuss several different method for solving Poisson’s equation for the potential φ in simple geometries. The
first method is the image charge method.

For simple geometries, we can try to obtain the Green’s functions GD or GN (for Dirichlet and Neumann boundary
condition) by placing a set of image charges outside the volume V of interest – i.e. on the “other side” of the system
boundary surface S. Because these image charges are outside V , their contribution to the potential inside V obeys
∇2φimage = 0. One then chooses the location of the image charges so that the total φ (from both the real charges in
V and the image charges outside V ) will obey the desired boundary condition.

1) The first case we consider is a charge q placed a distance d along the ẑ axis in front of an infinite flat grounded
plane (φ = 0 on the plane).
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We want ∇2φ = −4πqδ(x)δ(y)δ(z − d), and φ = 0 for z = 0. If we find a solution
to the above problem, we know it is the unique solution.

Solution: put a fictitious image charge −q at z = −d. The potential φ is then the Coulomb potential from the real
charge +q and the image charge −q.

φ(r) =
q√

x2 + y2 + (z − d)2
+

−q√
x2 + y + 2 + (z + d)2

(2.2.1)

The first term is from the real charge +q, the second term is from the image charge −q. Let us check that this φ is
indeed the solution to our problem.

Firstly, ∇2φ(r) = −4πqδ(r−dẑ)−4π(−q)δ(r+ ẑ) = −4πqδ(r−dẑ) for r in the volume V to the right of the grounded
plane. The second delta function from the image charge is zero everywhere in V , because the zero of that delta
function is at r = −zẑ which is outside V .

Secondly, we check the boundary condition.

φ(x, y, z = 0) =
q√

x2 + y2 + (−d)2
+

−q√
x2 + y2 + (+d)2

= 0 (2.2.2)

So φ = 0 on the grounded plane as desired. Thus this φ is indeed the solution.

From a formal point of view, the solution of Eq. (2.2.1) gives the solution for a point charge q in V , subject to the
condition that φ = 0 on the planar surface. So this φ/q just gives the Dirichlet Green’s function for the problem of
the grounded plane. If the charge is at r′, then the potential at r is

GD(r, r′) =
q

|r− r′|
+ F (r, r′) (2.2.3)

where F (r, r′) must obey ∇2F (r, r′) = 0 in V and be such that GD(r, r′) = 0 for r on the boundary surface S. The
image charge method tells us that F (r, r′) = −q/|r− r′ − 2dẑ| is just the Coulomb potential from the image charge.

We can now use our solution of Eq. (2.2.1) to compute some interesting physical behavior. First we find the electric
field E for z > 0 in the volume V . Since E = −∇φ, the z component of the electric field is given by taking the
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derivative of Eq. (2.2.1) with respect to z,

Ez = −∂φ
∂z

= q

[ (
1
2

)
2(z − d)

[x2 + y2 + (z − d)2]
3/2
−

(
1
2

)
2(z + d)

[x2 + y2 + (z + d)2]
3/2

]
(2.2.4)

= q

[
(z − d)

[x2 + y2 + (z − d)2]
3/2
− (z + d)

[x2 + y2 + (z + d)2]
3/2

]
(2.2.5)

We can use this result to compute the surface charge σ(x, y) on the surface of the conducting plane. Recall, the
potential at a charged surface must obey the condition

−∂φ
top

∂n
+
∂φbottom

∂n
= 4πσ (2.2.6)

Here φtop is the potential φ just to the right of the conductor surface, while φbottom is the potential just to the left of
the conductor surface. Since φ is constant inside a conductor we have ∂φbottom/∂n = 0, and so,

−∂φ
∂n

= − ∂φ

∂z

∣∣∣∣
z=0

= 4πσ ⇒ σ = − 1

4π

∂φ

∂z
=

1

4π
Ez(x, y, z = 0) (2.2.7)

From Eq. (2.2.5) we have

σ =
q

4π

[
−d

[x2 + y2 + d2]
3/2
− d

[x2 + y2 + d2]
3/2

]
=

−qd
2π [x2 + y2 + d2]

3/2
=

−qd
2π [r2⊥ + d2]

3/2
(2.2.8)

where r⊥ =
√
x2 + y2.

t÷¥
Note, this form for σ(r⊥) seems reasonable – the surface charge σ is largest at r⊥ = 0
where the plane is closest to the real charge q, and then it decays as r⊥ increases,
and one moves further away from q. The length scale on which σ starts to decrease
from its value at r⊥ = 0 is set by the distance d of the charge from the plane.

We can also ask, what is the total charge qinduced induced on the grounded plane by the presence of the charge q in
front of the plane?

qinduced =

∫ ∞
−∞

dxdy σ(x, y) = 2π

∫ ∞
0

dr⊥r⊥ σ(r⊥) = 2π

∫ ∞
0

dr⊥r⊥
(−qd)

2π[r2⊥ + d2]3/2
(2.2.9)

= −qd
[

−1

]r2⊥ + d2]1/2

]∞
0

= −qd
[
0− (−1)

d

]
= −q (2.2.10)

So qinduced = −q, the total induced charge on the conducting surface is just equal to the image charge.

Finally, we can compute the force F on the charge q in front of the conducting plane. What is the origin of this force?
It is the charge σ induced on the plane. What is the electric field produced by this σ? In the volume V to the right
of the plane, the field from σ is exactly the same as the field that would be produced by the image charge −q.

⇒ F =
−q q
(2d)2

ẑ =
−q2

4d2
ẑ Fz < 0 ⇒ the force attracts the charge q towards the plane (2.2.11)

What is the work that has to be done to move q into position from infinitely far away?

W =

∫ d

∞
d` · (−F) = −

∫ d

∞
dz Fz =

∫ ∞
d

dz

(
−q2

4z2

)
=
−q2

4d
(2.2.12)
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Why is the force used to compute W given by −F? Why the minus sign? Because F is the electric force acting on q.
If we want to move q around, we have to apply an equal but opposite force, −F, to cancel out the electric force.

We see that W < 0, no matter what is the sign of the charge q. This is because the force F is attractive. Energy is
released when the charge q moves towards the plane.

You might have thought that W would be equal to qφimage = −q2/2d2, which is just the electrostatic energy of q in
the potential of the image −q. But we see above that the correct W is one half of this. Why is that? When we say
that the energy of a charge q in the presence of other charges is qφ (with φ being the electrostatic potential produced
by the other charges), we get that result by moving q into position from infinity, keeping the other charges fixed in
place. However, when we move the charge q in from infinity in the present example, the image charge −q must also
be moving, so as to aways stay equidistant from the plane on the opposite side.

Summary: What is going on in this problem? If there was no charge q, then the grounded conducting plane would
be charge free with σ = 0. But now we put the charge q in front of the plane. If the plane stayed charge free, then
the only electric field in the system would be that produced by q. But the field from q would not be perpendicular to
the surface of the plane as it must be, because the plane is the surface of a conductor. The presence of the charge q
in front of the plane therefore induces charge σ to appear on the plane. This σ arranges itself non-uniformly over the
surface of the plane so that total electric field from q and from σ is then perpendicular to the plane. Where does this
σ come from? It comes from the source that is causing the plane to stay grounded with φ = 0. The image charge is
a trick that lets us compute σ and hence the total E to the right of the plane where the charge q is. Note, the image
charge must lie to the left of the plane, where we are not trying to find E.

Discussion Question 2.2.1

For the above problem, what is the total true physical electric field E to the left of the conducting plane?
What is the E field on the left side of the plane that is produced by the induced charge σ? Suppose now
that the conductor did not fill the half space z < 0, but was only a thin conducting plane of thickness w,
with the right hand surface at z = 0, and the left hand surface at z = −w. What would the electric field be
to the right, to the left, and inside the conducting plane?

2) Now consider a point charge q placed in front of a grounded (φ = 0) conducting sphere of radius R. The charge is
a distance s > R from the center of the sphere.

NR
charge

re

4--0
groundedconducting
sphere

We will try to solve this problem using the image charge method, placing
an image charge q′ on the other side of the bounding surface from where
the real charge q is, i.e. by putting the image charge inside the sphere.

Where in the sphere should we put q′? Since our problem has rotational
symmetry about the ẑ axis, we need to put q′ on the ẑ axis. So we put
q′ at distance a < R, inside the sphere on the ẑ axis.
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Now we compute the potential φ(r), at some position r outside the
sphere, that arises from the real charge q and the image charge q′. Using
the geometry shown in the sketch to the left, the position r is given by
the radial distance r and the polar angle θ with respect to the origin.
Then we have,

φ(r) =
q

|r− sẑ|
+

q′

|r− aẑ|
=

q√
r2 + s2 − 2sr cos θ

+
q′√

r2 + a2 − 2ra cos θ
(2.2.13)

We now need to choose q′ and a so that φ(R, θ) = 0 for all θ. Let us try to rewrite the denominators of the two terms
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above so that they look alike when r = R,

φ(R, θ) =
q√

R2 + s2 − 2sR cos θ
+

q′√
R2 + a2 − 2aR cos θ

(2.2.14)

Write,

R2 + a2 − 2aR cos θ =
a

s

( s
a
R2 + sa− 2sR cos θ

)
(2.2.15)

so that the cos θ terms in the two denominators will look alike. Then choose a so that sa = R2, i.e. a = R2/s , and

so sR2/a = s2. Then the denominator of the second term is,[
R2

s2
(
s2 +R2 − 2sR cos θ

)]1/2
=
R

s

[
s2 +R2 − 2sR cos θ

]1/2
(2.2.16)

and so

φ(R, θ) =
q

[R2 + s2 − 2sR cos θ]
1/2

+
q′
( s
R

)
[R2 + s2 − 2sR cos θ]

1/2
(2.2.17)

and the denominators of the two terms are now the same. So we can now make φ(R, θ) = 0 for all θ by choosing,

q′
( s
R

)
= −q ⇒ q′ = −qR

s
(2.2.18)

So using these values for a and q′ in Eq. (2.2.13), the solution to our problem for the potential at a general point r
outside the sphere is,

φ(r, θ) =
q

[r2 + s2 − 2rs cos θ]
1/2
− qR/s[

r2 +
R4

s2
− 2r

R2

s
cos θ

]1/2 (2.2.19)

=
q

[r2 + s2 − 2rs cos θ]
1/2
− q[

s2r2

R2
+R2 − 2rs cos θ

]1/2 (2.2.20)

As in the previous case of the flat plane, the presence of the charge q outside the sphere induces a surface charge σ(θ)
on the surface of the sphere. Since E = 0 inside the sphere,

4πσ = E · r̂ = − ∂φ

∂r

∣∣∣∣
r=R

⇒ σ(θ) = − q

4π

1

Rs

1− (R/s)2

[1 + (R/s)2 − 2(R/s) cos θ]
3/2

(2.2.21)

We see that σ(θ) is greatest at θ = 0, as one should expect, since that is the point on the surface closest to the charge
q.

We can integrate to find the total charge induced on the sphere,

qinduced = 2π

∫ π

0

dθ sin θ R2 σ(θ) = −qR/s = q′ (2.2.22)

In general, the total induced charge on the outside surface of a grounded conductor will be the sum of all the image
charges positioned inside the conductor. As you will see in a homework problem, this is not true of the induced charge
on the surface of a cavity inside a grounded conductor.

The force on the charge q due to the induced surface charge σ, is just given by the electric field of the image charge
q′. Since qq′ < 0, the force is always attractive. We have,

F =
qq′

(s− a)2
ẑ =

−q2(R/s)

(s−R2/s)2
ẑ =

−q2Rs
(s2 −R2)2

ẑ (2.2.23)
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Close to the surface of the sphere, we can write s = R+ d, with d� R. Then we have

F =
−q2Rs

(s−R)2(s+R)2
=
−q2R(R+ d)

d2(2R+ d)2
≈ −q

2

4d2
(2.2.24)

where in the last step we used d � R to write the leading order term as d gets small. Our result above is exactly
what we found for the case of a charge q a distance d in front of an infinite flat conducting plane! When q is so close
to the surface that d� R, the charge does not “see” that the surface is curved, and so it looks just like a flat plane.
The curvature of the spherical surface will only appear as corrections of order (d/R)2.

Far from the surface of the sphere, s� R, we have

F =
qq′

(s− a)2
ẑ =

−q2Rs
(s2 −R2)2

ẑ ≈ −q
2R

s3
ẑ so F ∼ 1

s3
(2.2.25)

This is now very different from the charge in front of the infinite flat plane, as well as the force from a point charge.
For both of those, the force goes as 1/(distance)2. Here the force goes as 1/(distance)3. The reason is that the force
between q and q′ goes like 1/(distance)2, but the image charge q′ decreases in magnitude as 1/distance as the charge
q moves further from the sphere.

Suppose now we change this problem so that the conducting sphere is no longer grounded (φ = 0) but has a net
charge Q on it. What is the potential φ(r) in this case? What will be the potential if the sphere is neutral, with
Q = 0?

To solve this new problem we want to add a new image charge q′′ that will represent this charge Q. If we use our
solution for the case of the grounded sphere to put an image charge q′ = −qR/s at position a = R/s along the ẑ
axis as before, then the E field from q and the image q′ will have many of the properties we desire, in particular E
will be perpendicular to the surface of the sphere at r = R. However the total charge on the sphere in that case will
be, as we computed above, just q′ and not Q. So we need our image charge to make up for the missing charge on

the sphere, and so we must have q′′ = Q− q′ . Then the total induced charge on the sphere will be the sum of the

image charges, and so be q′ + q′′ = Q, as desired. Where can we put this image charge q′′ so that it does not mess
up the property that E is perpendicular to the surface? The only place to put q′′, so that its E field is everywhere
perpendicular to the surface, is at the center of the sphere.

I

z

What real physical charge does this q′′ correspond to? Just as the image q′ cor-
responded to an induced surface charge σ(θ) on the surface of the sphere as given
in Eq. (2.2.21), the image charge q′′ corresponds to a uniformly distributed sur-
face charge of charge density σ̃ = q′′/4πR2 that adds to the σ from q′. The total
electrostatic potential in the problem is then the sum of the electrostatic potentials
from the real charge q, the surface charge σ, and the surface charge σ̃. Outside the
sphere, this will be exactly equal to the point charge Coulomb potentials from the
real charge q, and the image charges q′ and q′′. We thus have

φ(r, θ) =
q

(r2 + s2 − 2rs cos θ)
1/2

+
q′

(r2 + a2 − 2ra cos θ)
1/2

+
q′′

r
(2.2.26)

=
q

(r2 + s2 − 2rs cos θ)
1/2
− q(

s2r2

R2
+ R2 − 2rs cos θ

)1/2
+
Q+ qR/s

r
(2.2.27)

The force between q and the charged sphere is just the force between q and the images q′′ and q′.

F = F ẑ =
qq′′

s2
ẑ +

qq′

(s− a)2
ẑ =

q(Q+ qR/s)

s2
ẑ − q2(R/s)

(s− (R2/s))2
ẑ (2.2.28)
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F =
qQ

s2
+
q2R/s

s2
− q2R/s

(s−R2/s)2
=

qQ

s2
+ q2R

[
1

s3
− 1

s3(1−R2/s2)2

]
(2.2.29)

=
qQ

s2
+
q2R

s3

[
1− 1

(1−R2/s2)2

]
=

qQ

s2
− q2R3

s5
(2−R2/s2)

(1−R2/s2)2
(2.2.30)

Far from the sphere, s� R, the leading term is F = qQ/s2, which is just what one would expect if the sphere was a
point charge Q. The second term in the above gives the correction to this leading term which arises due to the fact
that Q is not smeared uniformly over the surface of the sphere.

Now let’s consider the special case of a neutral conducting sphere with Q = 0. The force then becomes,

F = −q
2R3

s5
(2−R2/s2)

(1−R2/s2)2
(2.2.31)

For large s� R, far from the neutral sphere, we thus have

F ≈ −2q2R3

s5
∼ 1

s5
(2.2.32)

which can be compared to the force far from the grounded sphere, as given by Eq. (2.2.25),

F ≈ −q
2R

s3
∼ 1

s3
(2.2.33)

We thus see that there is a very big difference between the force on a charge far from a grounded vs a neutral
conducting sphere! The force from the neutral sphere decays much more rapidly.

We can give a simple explanation for the F ∼ 1/s5 behavior for a neutral sphere. When the total charge Q = 0, the
image charge at the origin is just q′′ = −q′. So the two image charges, q′′ = −q′ at the origin, and q′ at a, form an
electric dipole with dipole moment p = q′a. As we will soon see in Notes 2-4, the electric field far from a dipole decays
as E ∼ p/r3, hence the force on the real charge q due to the electric field of the image charge dipole is F = qE ∼ qp/s3.
But since q′ = −qR/s and a = R2/s, we have p = −qR3/s2. So the force on q goes as F ∼ qp/s3 = −q2R3/s5. The
additional factor of 2 in Eq. (2.2.32) comes from the exact form of the dipole field, as we will see in Notes 2-4.

Return now to the more general case of Q 6= 0. For s� R, far from the sphere, we have,

F ≈ qQ

s2
− 2q2R3

s5
(2.2.34)

For qQ > 0, i.e. the charge q and the charge Q on the sphere have the same sign, the first term is positive and
dominates when the charge q is far enough away from the sphere. In this case F > 0 and the force on the charge q is
repulsive.

However close to the surface, where s = R+ d, from Eq. (2.2.30) we can write,

F =
qQ

s2
− q2R3

s5
s2

R2

(
2s2

R2
− 1

)
(
s2

R2
− 1

)2 (2.2.35)

To lowest order in d/R� 1, we can take s→ R everywhere except in the denominator of the second term. To lowest
order in d/R we get,

F ≈ qQ

R2
− q2

R2

1

((1 + d/R)2 − 1)
2 =

qQ

R2
− q2

R2

1

(−2d/R)2
=
qQ

R2
− q2

4d2
(2.2.36)

The first term is just the Coulomb repulsion between the charge q just outside the surface, and the charge Q on the
sphere. The second term is exactly the same as we got from the charge q close to the grounded sphere. As d→ 0, the
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first term stays finite, while the second term diverges. Thus the second term dominates the first when q is sufficiently
close to the sphere. In that case,

F ≈ −q
2

4d2
and the force on q is attractive (2.2.37)

Sufficiently close to the sphere there is no difference between the charged sphere, the neutral sphere (Q = 0), and the
grounded sphere (φ(R, θ) = 0). This is because, no matter what is the magnitude of the image charge q′′ (note q′′ = 0
for the grounded sphere), the image charge q′ lies so much closer to q than does q′′, that the force between q and q′

dominates.

The force we computed above is one of the key components contributing to the work function of a metal; this is the
energy one needs to supply to eject an electron from a metal. One might think that if one took a neutral piece of metal
and tried to eject an electron, that there would be a significant force between the electron and the net positive charge
left behind in the metal. From the above, we see that such an interaction is not the dominant effect. The dominate
work we have to do is to act against the force between q and the image charge q′ that is created near the surface of
the metal as we try to pull off the electron. Whether the metal is charged or neutral is a much less significant effect.

For the case where q and Q have the same sign, we saw (see Eq. (2.2.34)) that the force on the charge q is repulsive if
q is sufficiently far from the surface of the sphere, but the force is attractive if q is sufficiently close (see Eq. (2.2.37)).
So there must be some value of s where the force goes to zero. For larger s the charge q is repelled, but for smaller s
the charge q is attracted.

From Eq. (2.2.30), the value of s where F = 0 is given by,

F = 0 ⇒ Q

q
= x3

(2− x2)

(1− x2)2
where x = R/s (2.2.38)

In the figure below we plot this distance s/R vs Q/q. When Q/q = 1, the crossover between an attractive and a
repulsive interaction is at s/R = 1.6, or s = 1.6R. When Q/q = 0.1, the crossover is at s/R = 2.8 or s = 2.8R. The
smaller is Q/r, the larger is the distance at which the crossover occurs.
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distance s at which a charge q feels zero force
when in front of a conducting sphere of radius R 
with net charge Q

Discussion Question 2.2.2

Consider a point charge q a distance d in front of a thin conducting
plane of thickness w, as shown in the diagram. The plane has a
fixed net charge Q on it. What is the electric field to the right of
the plane, to the left of the plane, and inside the plane? What is
the force between the charge q and the plane? Assume that the
side area of the plane A is finite, so that the average surface charge
Q/2A is finite, however you make work the problem ignoring edge
effects, i.e. assuming the plane is effectively infinite.


