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Unit 2-4-S: An Example

σ(θ) = σ0 sin2θ
θ

z 
Suppose we have a sphere of radius R, and on the surface of the sphere
is a fixed surface charge density

σ(θ) = σ0 sin2 θ (2.4.S.1)

where θ is the usual spherical angle.

Let us find the solution for the electrostatic potential both inside and
outside the sphere. Then we will compute the monopole, dipole, and

quadrupole moments of this charge distribution and see that we can understand the exact solution outside the sphere
in terms of the multipole expansion.

Exact Solution

To find the exact solution we will use separation of variable in spherical coordinates. Inside the sphere, r < R, since
the potential should not blow up at the origin we know the solution must have the form,

φin(r, θ) =

∞∑
`=0

A`r
`P`(cos θ) r < R (2.4.S.2)

Outside the sphere, r > R, since the potential should vanish as r →∞ we know the solution must have the form,

φout(r, θ) =

∞∑
`=0

B`
r`+1

P`(cos θ) r > R (2.4.S.3)

The first boundary condition we use is that φ must be continuous as we cross a charged surface,

φin(R, θ) = φout(R, θ) ⇒
∞∑
`=0

A`R
`P`(cos θ) =

∞∑
`=0

B`
R`+1

P`(cos θ) (2.4.S.4)

Just like with Fourier series, if two Legendre polynomial series are equal then all the Legendre coefficients must be
equal, and so,

A`R
` =

B`
R`+1

⇒ B` = A`R
2`+1 (2.4.S.5)

The second boundary condition we use is that the normal component of the electric field E = −∇φ must jump by 4πσ
as we cross a charged surface. In our case the normal vector is just the radial unit vector r̂, and so n̂ · E = −dφ/dr.
We therefore have,

4πσ(θ) =

[
− dφout

dr
+

dφin

dr

]
r=R

=

∞∑
`=0

[
(`+ 1)

B`
rl+2

+ `A`r
`−1
]
r=R

P`(cos θ) (2.4.S.6)

=

∞∑
`=0

(2`+ 1)A`R
`−1P`(cos θ) using Eq. (2.4.S.5) (2.4.S.7)

We can now solve for the A` using the orthogonality of Legendre polynomials. We could multiply both sides of
the above by Pm(cos θ) and integrate over dθ sin θ, and use the orthogonality conditions. However, an easier way
is to just write σ(θ) in terms of a linear combination of the P`, which we can do as follows. With x ≡ cos θ, and
sin2 θ = 1− cos2 θ we have,

σ(x) = σ0(1− x2) (2.4.S.8)

Since this is a polynomial of order n = 2, we know that the expansion of σ(x) in terms of the P`(x) can involve only
the terms ` = 0, 1, 2. With P0(x) = 1, P1(x) = x and P2(x) = 1

2 (3x2 − 1) we have,

x2 =
2P2 + 1

3
=

2P2 + P0

3
⇒ 1− x2 = P0 −

2P2

3
− P0

3
=

2

3
(P0 − P2) (2.4.S.9)
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so

σ(θ) =
2σ0
3

[P0(cos θ)− P2(cos θ)] (2.4.S.10)

So now Eq. (2.4.S.7) becomes,

8πσ0
3

[P0(cos θ)− P2(cos θ)] =

∞∑
`=0

(2`+ 1)A`R
`−1P`(cos θ) (2.4.S.11)

and we see that all the A` = 0 except for ` = 0 and ` = 2. For ` = 0 the above gives,

` = 0 :
8πσ0

3
= A0R

−1 ⇒ A0 =
8πσ0R

3
⇒ B0 =

8πσ0R
2

3
(2.4.S.12)

and for ` = 2 we have,

` = 2 : −8πσ0
3

= 5A2R ⇒ A2 = −8πσ0
15R

⇒ B2 = −8πσ0R
4

15
(2.4.S.13)

So finally we have inside,

φin(r, θ) =
8πσ0R

3
− 8πσ0

15R
r2P2(cos θ) =

8πσ0R

3
− 8πσ0R

30

( r
R

)2
(3 cos2 θ − 1) for r < R (2.4.S.14)

and outside we have,

φout(r, θ) =
8πσ0R

2

3 r
− 8πσ0R

4

15 r3
P2(cos θ) =

8πσ0R
2

3 r
− 8πσ0R

4

30 r3
(3 cos2 θ − 1) for r > R (2.4.S.15)

Multipole Expansion

From the above exact solution for φout(r, θ) we see that there are only 1/r and 1/r3 terms. These are the monopole
and the quadrupole terms. Hence we know that the monopole and quadrupole moments are both non-zero, and the
dipole moment and all moments higher than the quadrupole are zero.

But if we did not have the exact solution, we could still argue and calculate as follows.

Monopole

Since σ(θ) = σ0 sin2 θ, then we always have σ(θ) ≥ 0 (I assume σ0 > 0), and hence when we integrate over the surface
of the sphere we will get a positive answer. The net charge on the sphere must therefore be positive and so there is a
non-zero monopole moment.

We can now compute the monopole moment, integrating over the surface of the sphere,

q =

∫
d3r ρ(r) =

∫ 2π

0

dϕ

∫ π

0

dθ sin θR2σ(θ) = 2πσ0R
2

∫ π

0

dθ sin3 θ =
8πσ0R

2

3
(2.4.S.16)

Where we used
∫ 2π

0
dθsin3θ =

∫ 2π

0
dθ(1− cos2 θ) sin θ =

[
− cos θ + 1

3 cos3 θ
]π
0

= (1− 1
3 )− (−1 + 1

3 ) = 4
3

The contribution to the potential from the monopole term is just q/r. Using the above q we see that we get exactly
the first term in the expression of Eq. (2.4.S.15).

Dipole

Since the charge distribution σ(θ) = σ0 sin2 θ has rotational symmetry about the ẑ axis (i.e. σ is independent of ϕ),
if there was a dipole moment p it could not have any components in the xy plane, since all directions in the xy plane
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are equivalent by the rotational symmetry, so we must have px = py = 0. Suppose now that there was a finite pz.
By the behavior of vectors under a reflection we would get pz ↔ −pz under reflection about the xy plane. But the
charge distribution σ(θ) is reflection symmetric about the xy plane, i.e. σ(θ) = σ(π−θ), which implies that pz should
not change under a reflection. The only consistent conclusion is that pz = 0. We can thus conclude on the basis of
symmetry that p = 0 and there is no dipole moment. This agrees with our observation that there is no 1/r2 term in
the exact potential φout of Eq. (2.4.S.15).

If the symmetry argument is confusing for you, we could also explicitly calculate p and see that it is zero. For a point
on the surface of the sphere we can write, r = (x, y, z) = R(sin θ cosϕ, sin θ sinϕ, cos θ). We then have for the dipole
moment,

p =

∫
d3r ρ(r)r =

∫ 2π

0

dϕ

∫ π

0

dθ sin θR2σ(θ)r = σ0R
3

∫ 2π

0

dϕ

∫ π

0

dθ sin3 θ

 sin θ cosϕ
sin θ sinϕ

cos θ

 =

 px
py
pz

 (2.4.S.17)

When we do the ϕ integration, the px component involves
∫ 2π

0
dϕ cosϕ = 0. Similarly, the py component involves∫ 2π

0
dϕ sinϕ = 0. Hence px = py = 0. We see that these integrals vanish because σ(θ) is independent of ϕ, i.e. the

charge distribution is rotationally symmetric about the ẑ axis.

The pz component is independent of ϕ, and so does not vanish as we integrate over ϕ. But if we look at the θ
integration we have,

∫ π
0
dθ sin3 θ cos θ =

[
1
4 sin4 θ

]π
0

= 0− 0 = 0. Hence pz = 0. In this case it is the symmetry of σ(θ)
about θ = π, i.e. the reflection symmetry about the xy plane, that causes the integral to vanish.

We thus conclude that the dipole moment p = 0.

Quadrupole

By rotation symmetry about the ẑ axis, we can infer that Qxy = Qyx = Qxz = Qzx = Qyz = Qzy = 0. The quadrupole
tensor is therefore diagonal.

By rotation symmetry about the ẑ axis, we can also infer that Qxx = Qyy. And since
↔
Q is traceless, we then have

Qxx = Qyy = − 1
2Qzz. So the only element we really need to compute is Qzz, and we can then get the entire

quadrupole tensor
↔
Q.

But, just to see how the calculation goes, we will explicitly compute all the elements of
↔
Q and see that they do indeed

have the properties given above.

↔
Q =

∫
d3r ρ(r)

(
3rr− r2 I

↔)
=

∫ 2π

0

dϕ

∫ π

0

dθ sin θR2σ(θ)


3x2 −R2 3xy 3xz

3xy 3y2 −R2 3yz

3xz 3yz 3z2 −R

 (2.4.S.18)

where on the surface of the sphere r2 = R2. Now use x = R sin θ cosϕ, y = R sin θ sinϕ, and z = R cos θ in the above
to get,

↔
Q = σ0R

4

∫ 2π

0

dϕ

∫ π

0

dθ sin3 θ


3 sin2 θ cos2 ϕ− 1 3 sin2 θ cosϕ sinϕ 3 sin θ cos θ cosϕ

3 sin2 θ cosϕ sinϕ 3 sin2 θ sin2 ϕ− 1 3 sin θ cos θ sinϕ

3 sin θ cos θ cosϕ 3 sin θ cos θ sinϕ 3 cos2 θ − 1

 (2.4.S.19)

When we compute the component Qxz the integral over ϕ is
∫ 2π

0
dϕ cosϕ = 0, so Qxz = Qzx = 0. When we compute

the component Qyz the integral over ϕ is
∫ 2π

0
dϕ sinϕ = 0, so Qyz = Qzy = 0. When we compute the component Qxy

the integral over ϕ is
∫ 2π

0
dϕ cosϕ sinϕ = 1

2

∫ 2π

0
dϕ sin(2ϕ) = 0, so Qxy = Qyx = 0. We have thus confirmed that the

quadrupole tensor is diagonal.
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When we compute the component Qxx the integral over the ϕ dependent piece is
∫ 2π

0
dϕ cos2 ϕ = π. When we

compute the component Qyy the integral over the ϕ dependent piece is
∫ 2π

0
dϕ sin2 ϕ = π. When we compute the

component Qzz there is no ϕ dependent piece and
∫ 2π

0
dϕ = 2π. So after doing the ϕ integration we get,

↔
Q = σ0R

4

∫ π

0

dθ sin3 θ


3π sin2 θ − 2π 0 0

0 3π sin2 θ − 2π 0

0 0 6π cos2 θ − 2π

 (2.4.S.20)

So we have confirmed that Qxx = Qyy. Moreover we can see that when we compute Qxx +Qyy +Qzz the integrand

is proportional to 6π sin2 θ + 6π cos2 θ − 6π = 6π − 6π = 0, so we have confirmed that
↔
Q is indeed traceless.

To complete the calculation we will need
∫ π
0
dθ sin3 θ = 4

3 ,
∫ π
0
dθ sin5 θ = 16

15 , and
∫ π
0
dθ sin3 θ cos2 θ =

∫ π
0
dθ sin3 θ(1−

sin2 θ) =
∫ π
0
dθ(sin3 θ − sin5 θ) = 4

3 −
16
15 = 4

15 . We thus get,

↔
Q = πσ0R

4


3·16
15 −

2·4
3 0 0

0 3·16
15 −

2·4
3 0

0 0 6·4
15 −

2·4
3

 = πσ0R
4


8
15 0 0

0 8
15 0

0 0 − 16
15

 =
8πσ0R

4

15


1 0 0

0 1 0

0 0 −2

 (2.4.S.21)

We can now see explicitly that Qxx = Qyy = − 1
2Qzz.

Finally, the contribution of the quadrupole moment to the electrostatic potential is
r̂ ·
↔
Q · r̂

2 r3
. This gives a contribution

to φout that is

8πσ0R
4

30 r3
(sin θ cosϕ, sin θ sinϕ, cos θ) ·


1 0 0

0 1 0

0 0 −2

 ·


sin θ cosϕ

sin θ sinϕ

cos θ

 (2.4.S.22)

=
8πσ0R

4

30 r3
(sin θ cosϕ, sin θ sinϕ, cos θ) ·


sin θ cosϕ

sin θ sinϕ

−2 cos θ

 (2.4.S.23)

=
8πσ0R

4

30 r3
(
sin2 θ cos2 ϕ+ sin2 θ sin2 ϕ− 2 cos2 θ

)
=

8πσ0R
4

30 r3
(
sin2 θ − 2 cos2 θ

)
(2.4.S.24)

=
8πσ0R

4

30 r3
(
1− 3 cos2 θ

)
(2.4.S.25)

This is exactly the second term in the exact solution for φout of Eq. (2.4.S.15). Thus the second term in Eq. (2.4.S.15)
is just the quadrupole contribution. The exact solution tells us that all higher moments vanish.

Note:
∫ π
0
dθ sin5 θ =

∫ π
0
dθ sin θ(1 − cos2 θ)2 =

∫ π
0
dθ sin θ(1 − 2 cos2 θ + cos4 θ) =

[
− cos θ + 2

3 cos3 θ − 1
5 cos5 θ

]π
0

=[
1− 2

3 + 1
5

]
−
[
−1 + 2

3 −
1
5

]
= 8

15 + 8
15 = 16

15


