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Unit 3-4-S: An Example
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Suppose we have a sphere of magnetizable material of radius R and
permeability µ. The sphere is in an external magnetic field B0 = B0ẑ.
What are the magnetic fields inside and outside the sphere?

Since there is no free current in this problem the macroscopic j = 0 and
we can then use ∇ ×H = 4π

c j = 0 to write H = −∇φM , where φM is
the magnetic scalar potential for H.

Note, since B = H outside the sphere, and B = µH inside the sphere,
with µ spatially constant, we also have that ∇ × B = 0 both inside
and outside (but not necessarily at the boundary) and so we could have
chosen a magnetic scalar potential φ̃M for B, so that B = −∇φ̃M . If

you do things correctly, you will get the same results whether you work with φM or φ̃M ; we will work with φM , the
potential for H.

Since inside the sphere we have a magnetic material, Bin = µHin.

Since outside the sphere we have only a vacuum, Bout = Hout.

Now ∇ ·B = 0 ⇒ ∇ ·H = 0 ⇒ −∇2φM = 0

and since the problem has rotational symmetry about the ẑ axis we know that we can write our solution for φM as a
Legendre polynomial series. We can therefore write,

Inside: φinM =

∞∑
`=0

a`r
`P`(cos θ) (3.4.S.1)

Outside: φoutM = −B0z +

∞∑
`=0

b`
r`+1

P`(cos θ) (3.4.S.2)

Note: in φinM there are no
b`
r`+1

terms since φM should not diverge as r → 0. And in φoutM there are no a`r
` terms

since φoutM must give only the external applied field at r →∞. The first term in φoutM just gives the external magnetic
field B0 = H0 = −∇φM = B0ẑ, and we can rewrite this term as,

−B0z = −B0r cos θ = −B0rP1(cos θ) (3.4.S.3)

Boundary Conditions

i) The tangential component of H is continuous across an interface on which there is no macroscopic (i.e. free) sheet
current, as is the case here. This is equivalent to saying that φM must be continuous at the surface of the sphere.
This is completely analogous to the discussion in Notes 3-5 page 2, where we show that for E = −∇φ, the fact that
the tangential component of E is continuous at an interface implies that φ is continuous. So we have,

φinM (R, θ) = φoutM (R, θ) ⇒
∞∑
`=0

a`R
`P`(cos θ) = −B0RP1(cos θ) +

∞∑
`=0

b`
R`+1

P`(cos θ) (3.4.S.4)

Therefore, for ` 6= 1 we have,

a`R
` =

b`
R`+1

⇒ b` = a`R
2`+1 ` 6= 1 (3.4.S.5)

while for ` = 1 we have,

a1R = −B0R+
b1
R2

⇒ b1 = (a1 +B0)R3 ` = 1 (3.4.S.6)
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ii) The normal component of B is continuous.

Bin · r̂ = Bout · r̂ ⇒ µHin · r̂ = Hout · r̂ ⇒ µ
∂φinM
∂r

∣∣∣
r=R

=
∂φoutM

∂r

∣∣∣
r=R

(3.4.S.7)

⇒ µ

∞∑
`=0

` a`R
`−1P`(cos θ) = −B0P1(cos θ)−

∞∑
`=0

(`+ 1)b`
R`+2

P`(cos θ) (3.4.S.8)

Therefore for ` 6= 1 we have,

µ `a`R
`−1 = − (`+ 1)b`

R`+2
⇒ b` = −a` µ

`

`+ 1
R2`+1 ` 6= 1 (3.4.S.9)

while for ` = 1 we have,

µa1 = −B0 −
2b1
R3

⇒ b1 = − (µa1 +B0)R3

2
` = 1 (3.4.S.10)

For ` 6= 1 we need both Eqs. (3.4.S.5) and (3.4.S.9) to hold. This would imply that −µ `

`+ 1
= 1, which in general

cannot be true; `/(`+ 1) < 1 and µ is usually positive. Hence we must conclude,

a` = b` = 0 ` 6= 1 (3.4.S.11)

For ` = 1 we need both Eqs. (3.4.S.6) and (3.4.S.10) to hold. This gives,

(a1 +B0)R3 = − (µa1 +B0)R3

2
⇒ a1 = − 3B0

2 + µ
(3.4.S.12)

and substituting into Eq. (3.4.S.6) gives

b1 =

(
µ− 1

µ+ 2

)
B0R

3 (3.4.S.13)

We have now determined all the unknown constants, and so our solution is,

Inside the sphere:

φinM = a1rP1(cos θ) = − 3B0

2 + µ
r cos θ = − 3B0

2 + µ
z, r < R inside (3.4.S.14)

and the magnetic field H inside is,

Hin = −∇φinM =
3B0

2 + µ
ẑ is uniform inside the sphere (3.4.S.15)

the magnetic field B inside is,

Bin = µHin =
3µB0

2 + µ
ẑ (3.4.S.16)

and the magnetization density M inside the sphere is,

M =
B−H

4π
=
µ− 1

4π
Hin =

3(µ− 1)

4π(µ+ 2)
B0 ẑ (3.4.S.17)

Assuming µ > 1, the sphere thus has a paramagnetic response, with M ‖ B0, and a uniform magnetization M with
a total magnetic dipole moment,

m =
4πR3

3
M =

(
µ− 1

µ+ 2

)
B0R

3 ẑ (3.4.S.18)
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Outside the sphere:

φoutM = −B0z +
b1
r2
P1(cos θ) = −B0z +

(
µ− 1

µ+ 2

)
B0

R3

r2
cos θ, r > R outside (3.4.S.19)

and the magnetic field B = H outside is,

Bout = Hout = −∇φoutM = −∂φ
out
M

∂r
r̂− 1

r

∂φoutM

∂θ
θ̂ = B0 ẑ +

(
µ− 1

µ+ 2

)
B0R

3

[
2 cos θ r̂ + sin θ θ̂

r3

]
(3.4.S.20)

= B0 ẑ + m

[
2 cos θ r̂ + sin θ θ̂

r3

]
(3.4.S.21)

The magnetic field outside the sphere is just that of the applied magnetic field B0 plus the field of a pure magnetic
dipole m. Recall, we saw such a solution earlier when we discussed a uniformly magnetized sphere in Notes 3-3.


