Unit 3-4-S: An Example

Suppose we have a sphere of magnetizable material of radius R and permeability μ. The sphere is in an external magnetic field $\mathbf{B}_{0}=B_{0} \hat{\mathbf{z}}$. What are the magnetic fields inside and outside the sphere?

Since there is no free current in this problem the macroscopic $\mathbf{j}=0$ and we can then use $\boldsymbol{\nabla} \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{j}=0$ to write $\mathbf{H}=-\boldsymbol{\nabla} \phi_{M}$, where ϕ_{M} is the magnetic scalar potential for \mathbf{H}.

Note, since $\mathbf{B}=\mathbf{H}$ outside the sphere, and $\mathbf{B}=\mu \mathbf{H}$ inside the sphere, with μ spatially constant, we also have that $\boldsymbol{\nabla} \times \mathbf{B}=0$ both inside and outside (but not necessarily at the boundary) and so we could have chosen a magnetic scalar potential $\tilde{\phi}_{M}$ for \mathbf{B}, so that $\mathbf{B}=-\nabla \tilde{\phi}_{M}$. If you do things correctly, you will get the same results whether you work with ϕ_{M} or $\tilde{\phi}_{M}$; we will work with ϕ_{M}, the potential for \mathbf{H}.

Since inside the sphere we have a magnetic material, $\mathbf{B}^{\mathrm{in}}=\mu \mathbf{H}^{\mathrm{in}}$.
Since outside the sphere we have only a vacuum, $\mathbf{B}^{\text {out }}=\mathbf{H}^{\text {out }}$.
Now $\boldsymbol{\nabla} \cdot \mathbf{B}=0 \quad \Rightarrow \quad \boldsymbol{\nabla} \cdot \mathbf{H}=0 \quad \Rightarrow \quad-\nabla^{2} \phi_{M}=0$
and since the problem has rotational symmetry about the $\hat{\mathbf{z}}$ axis we know that we can write our solution for ϕ_{M} as a Legendre polynomial series. We can therefore write,

$$
\begin{align*}
\text { Inside: } & \phi_{M}^{\text {in }}=\sum_{\ell=0}^{\infty} a_{\ell} r^{\ell} P_{\ell}(\cos \theta) \tag{3.4.S.1}\\
\text { Outside: } & \phi_{M}^{\text {out }}=-B_{0} z+\sum_{\ell=0}^{\infty} \frac{b_{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) \tag{3.4.S.2}
\end{align*}
$$

Note: in $\phi_{M}^{\text {in }}$ there are no $\frac{b_{\ell}}{r^{\ell+1}}$ terms since ϕ_{M} should not diverge as $r \rightarrow 0$. And in $\phi_{M}^{\text {out }}$ there are no $a_{\ell} r^{\ell}$ terms since $\phi_{M}^{\text {out }}$ must give only the external applied field at $r \rightarrow \infty$. The first term in $\phi_{M}^{\text {out }}$ just gives the external magnetic field $\mathbf{B}_{0}=\mathbf{H}_{0}=-\boldsymbol{\nabla} \phi_{M}=B_{0} \hat{\mathbf{z}}$, and we can rewrite this term as,

$$
\begin{equation*}
-B_{0} z=-B_{0} r \cos \theta=-B_{0} r P_{1}(\cos \theta) \tag{3.4.S.3}
\end{equation*}
$$

Boundary Conditions

i) The tangential component of \mathbf{H} is continuous across an interface on which there is no macroscopic (i.e. free) sheet current, as is the case here. This is equivalent to saying that ϕ_{M} must be continuous at the surface of the sphere. This is completely analogous to the discussion in Notes 3-5 page 2, where we show that for $\mathbf{E}=-\boldsymbol{\nabla} \phi$, the fact that the tangential component of \mathbf{E} is continuous at an interface implies that ϕ is continuous. So we have,

$$
\begin{equation*}
\phi_{M}^{\mathrm{in}}(R, \theta)=\phi_{M}^{\mathrm{out}}(R, \theta) \Rightarrow \sum_{\ell=0}^{\infty} a_{\ell} R^{\ell} P_{\ell}(\cos \theta)=-B_{0} R P_{1}(\cos \theta)+\sum_{\ell=0}^{\infty} \frac{b_{\ell}}{R^{\ell+1}} P_{\ell}(\cos \theta) \tag{3.4.S.4}
\end{equation*}
$$

Therefore, for $\ell \neq 1$ we have,

$$
\begin{equation*}
a_{\ell} R^{\ell}=\frac{b_{\ell}}{R^{\ell+1}} \Rightarrow \quad b_{\ell}=a_{\ell} R^{2 \ell+1} \quad \ell \neq 1 \tag{3.4.S.5}
\end{equation*}
$$

while for $\ell=1$ we have,

$$
\begin{equation*}
a_{1} R=-B_{0} R+\frac{b_{1}}{R^{2}} \quad \Rightarrow \quad b_{1}=\left(a_{1}+B_{0}\right) R^{3} \quad \ell=1 \tag{3.4.S.6}
\end{equation*}
$$

ii) The normal component of \mathbf{B} is continuous.

$$
\begin{align*}
& \mathbf{B}^{\text {in }} \cdot \hat{\mathbf{r}}=\mathbf{B}^{\text {out }} \cdot \hat{\mathbf{r}} \Rightarrow \mu \mathbf{H}^{\text {in }} \cdot \hat{\mathbf{r}}=\left.\mathbf{H}^{\text {out }} \cdot \hat{\mathbf{r}} \Rightarrow \mu \frac{\partial \phi_{M}^{\mathrm{in}}}{\partial r}\right|_{r=R}=\left.\frac{\partial \phi_{M}^{\text {out }}}{\partial r}\right|_{r=R} \tag{3.4.S.7}\\
& \Rightarrow \quad \mu \sum_{\ell=0}^{\infty} \ell a_{\ell} R^{\ell-1} P_{\ell}(\cos \theta)=-B_{0} P_{1}(\cos \theta)-\sum_{\ell=0}^{\infty} \frac{(\ell+1) b_{\ell}}{R^{\ell+2}} P_{\ell}(\cos \theta) \tag{3.4.S.8}
\end{align*}
$$

Therefore for $\ell \neq 1$ we have,

$$
\begin{equation*}
\mu \ell a_{\ell} R^{\ell-1}=-\frac{(\ell+1) b_{\ell}}{R^{\ell+2}} \Rightarrow b_{\ell}=-a_{\ell} \mu \frac{\ell}{\ell+1} R^{2 \ell+1} \quad \ell \neq 1 \tag{3.4.S.9}
\end{equation*}
$$

while for $\ell=1$ we have,

$$
\begin{equation*}
\mu a_{1}=-B_{0}-\frac{2 b_{1}}{R^{3}} \quad \Rightarrow \quad b_{1}=-\frac{\left(\mu a_{1}+B_{0}\right) R^{3}}{2} \quad \ell=1 \tag{3.4.S.10}
\end{equation*}
$$

For $\ell \neq 1$ we need both Eqs. (3.4.S.5) and (3.4.S.9) to hold. This would imply that $-\mu \frac{\ell}{\ell+1}=1$, which in general cannot be true; $\ell /(\ell+1)<1$ and μ is usually positive. Hence we must conclude,

$$
\begin{equation*}
a_{\ell}=b_{\ell}=0 \quad \ell \neq 1 \tag{3.4.S.11}
\end{equation*}
$$

For $\ell=1$ we need both Eqs. (3.4.S.6) and (3.4.S.10) to hold. This gives,

$$
\begin{equation*}
\left(a_{1}+B_{0}\right) R^{3}=-\frac{\left(\mu a_{1}+B_{0}\right) R^{3}}{2} \Rightarrow a_{1}=-\frac{3 B_{0}}{2+\mu} \tag{3.4.S.12}
\end{equation*}
$$

and substituting into Eq. (3.4.S.6) gives

$$
\begin{equation*}
b_{1}=\left(\frac{\mu-1}{\mu+2}\right) B_{0} R^{3} \tag{3.4.S.13}
\end{equation*}
$$

We have now determined all the unknown constants, and so our solution is,
Inside the sphere:

$$
\begin{equation*}
\phi_{M}^{\mathrm{in}}=a_{1} r P_{1}(\cos \theta)=-\frac{3 B_{0}}{2+\mu} r \cos \theta=-\frac{3 B_{0}}{2+\mu} z, \quad r<R \text { inside } \tag{3.4.S.14}
\end{equation*}
$$

and the magnetic field \mathbf{H} inside is,

$$
\begin{equation*}
\mathbf{H}^{\mathrm{in}}=-\boldsymbol{\nabla} \phi_{M}^{\mathrm{in}}=\frac{3 B_{0}}{2+\mu} \hat{\mathbf{z}} \quad \text { is uniform inside the sphere } \tag{3.4.S.15}
\end{equation*}
$$

the magnetic field \mathbf{B} inside is,

$$
\begin{equation*}
\mathbf{B}^{\mathrm{in}}=\mu \mathbf{H}^{\mathrm{in}}=\frac{3 \mu B_{0}}{2+\mu} \hat{\mathbf{z}} \tag{3.4.S.16}
\end{equation*}
$$

and the magnetization density \mathbf{M} inside the sphere is,

$$
\begin{equation*}
\mathbf{M}=\frac{\mathbf{B}-\mathbf{H}}{4 \pi}=\frac{\mu-1}{4 \pi} \mathbf{H}^{\mathrm{in}}=\frac{3(\mu-1)}{4 \pi(\mu+2)} B_{0} \hat{\mathbf{z}} \tag{3.4.S.17}
\end{equation*}
$$

Assuming $\mu>1$, the sphere thus has a paramagnetic response, with $\mathbf{M} \| \mathbf{B}_{0}$, and a uniform magnetization \mathbf{M} with a total magnetic dipole moment,

$$
\begin{equation*}
\mathbf{m}=\frac{4 \pi R^{3}}{3} \mathbf{M}=\left(\frac{\mu-1}{\mu+2}\right) B_{0} R^{3} \hat{\mathbf{z}} \tag{3.4.S.18}
\end{equation*}
$$

Outside the sphere:

$$
\begin{equation*}
\phi_{M}^{\text {out }}=-B_{0} z+\frac{b_{1}}{r^{2}} P_{1}(\cos \theta)=-B_{0} z+\left(\frac{\mu-1}{\mu+2}\right) B_{0} \frac{R^{3}}{r^{2}} \cos \theta, \quad r>R \text { outside } \tag{3.4.S.19}
\end{equation*}
$$

and the magnetic field $\mathbf{B}=\mathbf{H}$ outside is,

$$
\begin{align*}
\mathbf{B}^{\text {out }}=\mathbf{H}^{\text {out }} & =-\nabla \phi_{M}^{\text {out }}=-\frac{\partial \phi_{M}^{\text {out }}}{\partial r} \hat{\mathbf{r}}-\frac{1}{r} \frac{\partial \phi_{M}^{\text {out }}}{\partial \theta} \hat{\boldsymbol{\theta}}=B_{0} \hat{\mathbf{z}}+\left(\frac{\mu-1}{\mu+2}\right) B_{0} R^{3}\left[\frac{2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\boldsymbol{\theta}}}{r^{3}}\right] \tag{3.4.S.20}\\
& =B_{0} \hat{\mathbf{z}}+\mathbf{m}\left[\frac{2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\boldsymbol{\theta}}}{r^{3}}\right] \tag{3.4.S.21}
\end{align*}
$$

The magnetic field outside the sphere is just that of the applied magnetic field \mathbf{B}_{0} plus the field of a pure magnetic dipole \mathbf{m}. Recall, we saw such a solution earlier when we discussed a uniformly magnetized sphere in Notes 3-3.

