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Unit 4-2-S: Magnetic Monopoles, Electromagnetic Angular Momentum, and the Quantization of
Charge

Maxwell’s equations, as we know and love them, are:

∇ ·E = 4πρ, ∇×E = −1

c

∂B

∂t
, ∇ ·B = 0, ∇×B =

4π

c
j +

1

c

∂E

∂t
(4.2.S.1)

The equation ∇ ·B = 0 tells us there are no magnetic monopoles, i.e. no magnetic analog of a charge. Magnetic field
lines have no sources or sinks; they either close upon themselves or come in from infinity and go out to infinity.

But why are there no magnetic monopoles? Simply because no one ever found one! Every so often people do
experiments to look, and every so often people claim to have found a monopole. But those observations have never
(as of yet) stood the test of time and reproducibly found monopoles. So to the best of our knowledge, there are none.

But that does not prevent people from thinking about what might be, if indeed monopoles were to exist. And
such thought led Dirac to a clever argument that shows why charge would be quantized into integer multiples of
a fundamental unit, were magnetic monopoles to exist. Recall, it is experimentally observed that electric charge is
indeed quantized, but there is no apparent reason why it need be so. Dirac’s argument provides a possible answer!
Below we sketch out this argument.

Suppose there were magnetic monopoles gi sitting at positions ri. We could then define a magnetic monopole density,
just like we defined the electric charge density,

η(r, t) =
∑
i

giδ(r− ri(t)) (4.2.S.2)

and then Maxwell’s equation for ∇ ·B would then be,

∇ ·B = 4πη (4.2.S.3)

We would also need to make a modification to Faraday’s law, in the same spirit as Maxwell provided a correction to
the magnetostatic Ampere’s law.
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= 0 (4.2.S.4)

but
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6= 0 in general (4.2.S.5)

In general, there should be a conservation of magnetic monopoles, just like there is a conservation of electric charges,

∂η

∂t
= −∇ · k (4.2.S.6)

where k =
∑
i giviδ(r− ri) is the monopole current density, analogous to the electric current density j.

One then has

∇ ·
(
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)
= −4π

c
∇ · k (4.2.S.7)

Then, in the spirit of Maxwell’s correction to Ampere’s law, we could say that if the divergence of the vectors on both
sides are equal, then maybe the vectors themselves are equal, and so,
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= −4π
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k ⇒ ∇×E = −4π

c
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(4.2.S.8)

becomes the corrected Faraday’s law. This corrected Faraday’s law has the same form as the Maxwell corrected
Ampere’s law, except the terms on the right hand side enter with minus signs.
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On to Dirac’s argument!
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Suppose one had an electric charge q sitting at the origin, and a magnetic
monopole g sitting at position dẑ, a distance d above the charge on the
ẑ axis.

The electric field from the electric charge at an observer at position r
would be,

E(r) = q
r̂

r2
= q

r

r3
(4.2.S.9)

If we call r1 = r − d the displacement from the magnetic monopole to
the observer at r, then the magnetic field at r would be,

B(r) = g
r̂1
r21

= g
r1
r32

= g
r− d

|r− d|3
(4.2.S.10)

From Notes 4-2 we know that these electric and magnetic fields carry momentum, and so also angular momentum.
The electromagnetic momentum density is,

Π =
1

4πc
E×B (4.2.S.11)

and so the electromagnetic angular momentum density is,

L = r×Π =
r× (E×B)

4πc
=

qg

4πc

r× [r× (r− d)]

r3|r− d|3
= − qg

4πc

r× [r× d]

r3|r− d|3
since r× r = 0 (4.2.S.12)

Now r×d = −rd sin θ ϕ̂ and r× [r×d] = r2d sin θ θ̂. So L(r) points in the θ̂ direction. The θ̂ vector has projections
along the ẑ direction and in the xy plane. Due to the problem’s rotational symmetry about the ẑ axis, when we
integrate over all space to get the total angular momentum L, the components in the xy plane will cancel out and
vanish, and only the component along ẑ will remain non-zero. So we only need to compute this z-component.

ẑ · r× [r× d] = ẑ · (r[r · d]− d[r · r]) = (ẑ · r)(r · d)− (ẑ · d)(r · r) = r2d cos2 θ − r2d (4.2.S.13)

= r2d(cos2 θ − 1) = −r2d sin2 θ (4.2.S.14)

where we used A× (B×C) = B(A ·C)−C(A ·B).

We therefore have,

ẑ ·L =
qg

4πc

r2d sin2 θ

r3|r− d|3
=

qg

4πc

d sin2 θ

r|r− d|3
=

qg

4πc

d sin2 θ

r(r2 + d2 − 2rd cos θ)3/2
(4.2.S.15)

Then we have for the total angular momentum of the electromagnetic fields,

ẑ · L =

∫
d3r ẑ ·L =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ ∞
0

dr r2
qg

4πc

d sin2 θ

r(r2 + d2 − 2rd cos θ)3/2
(4.2.S.16)

=
qgd

2c

∫ π

0

dθ sin3 θ

∫ ∞
0

dr
r

(r2 + d2 − 2rd cos θ)3/2
(4.2.S.17)

We can first do the r integration. Looking up in a table of integrals I find,∫
dx

x

(ax2 + bx+ c)3/2
=

2(bx+ 2c)

(b2 − 4ac)
√
ax2 + bx+ c

(4.2.S.18)
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Apply this with a = 1, b = −2d cos θ, c = d2 and x = r to get∫ ∞
0

dr
r

(r2 + d2 − 2rd cos θ)3/2
=

[
−4dr cos θ + 4d2

(4d2 cos2 θ − 4d2)
√
r2 + d2 − 2rd cos θ

]∞
r=0

(4.2.S.19)

=
−4d cos θ

4d2 cos2 θ − 4d2
− 4d2

(4d2 cos2 θ − 4d2)d
=

1 + cos θ

d(1− cos2 θ)
=

1 + cos θ

d(1 + cos θ)(1− cos θ)
(4.2.S.20)

=
1

d(1− cos θ)
(4.2.S.21)

So

ẑ · L =
qgd

2cd

∫ π

0

dθ
sin3 θ

1− cos θ
(4.2.S.22)

Note, the distance d cancels in the numerator and the denominator, and so drops out of the answer. The total angular
momentum is independent of the distance between the electric charge and the magnetic monopole.

To do the θ integration, make the substitutions x = − cos θ, dx = dθ sin θ, and sin2 θ = 1− x2. We then get,

ẑ · L =
qg

2c

∫ 1

−1
dx

1− x2

1 + x
=
qg

2c

∫ 1

−1
dx (1− x) =

qg

2c

[
x− x2

2

]1
−1

=
qg

c
(4.2.S.23)

Now from quantum mechanics we know that angular momentum must be quantized in units of
~
2

. We therefore must

have,

qg

c
=
n~
2

⇒ qg =
n~c
2

where n is an integer (4.2.S.24)

The above would not in general hold if q and g could take any value along a continuum of values. The product qg
can only be quantized in units of ~c/2 if the electric charge q is quantized in units of q0 and the magnetic monopole
is quantized in units of g0, i.e. q = mq0 and g = m′g0 with m and m′ integer, and then q0g0 is an integer multiple of
~c/2, say q0g0 = n′~c/2 with n′ integer. Then we have,

qg = mm′q0g0 = mm′n′
~c
2

=
n~c
2

with n = mm′n′ integer (4.2.S.25)

So the existence of a magnetic monopole, together with the quantum mechanical quantization of angular momentum,
would imply that electric charge must be quantized in integer multiples of some fundamental unit q0. This argument
would thus give us a means to understand why electric charge is indeed observed to be quantized.

Unfortunately, no one has ever convincingly demonstrated the existence of magnetic monopoles!


