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Unit 4-3-S: Forces and Torques on Electric and Magnetic Dipoles, and Interaction Energies

In these notes we consider the forces and torques on electric and magnetic dipoles in external electrostatic and
magnetostatic fields, and also the electrostatic and magnetostatic interaction energies of the dipoles in an external
field. By an external field, we mean the field created by sources other than the charges or currents that form the
dipole.

Electric Dipoles - Force and Torque

Consider a localized charge distribution ρ with net charge q =
∫
d3r ρ = 0.

The total force on ρ due to a slowly varying external electric field E is,

F =

∫
d3r ρ(r) E(r) (4.3.S.1)

Define r = r0 + r′, where r0 is some fixed reference point in the center of the charge distribution ρ, and r′ is the
distance relative to r0. Then,

F =

∫
d3r′ ρ(r0 + r′) E(r0 + r′) (4.3.S.2)

Since E is slowly varying on the length scale of the localized distribution ρ, we can expand in r′,

F =

∫
d3r′ ρ(r0 + r′) [E(r0) + (r′ ·∇)E(r0) + . . . ] (4.3.S.3)

=

[∫
d3rρ(r)

]
E(r0) +

[∫
d3r ρ(r)r′ ·∇

]
E(r0) (4.3.S.4)

= (p ·∇)E(r0) (4.3.S.5)

where the first term vanishes since the total charge q = 0, and p is the electric dipole moment computed about the
point r0 (i.e. with r0 as the origin). However, since q = 0, we know the value of p is independent of the choice of the
origin.

We thus have for the force on an electric dipole p,

F = (p ·∇)E =
3∑

α=1

pα
∂E

∂rα
(4.3.S.6)

Note, for E = constant, F = 0.

The torque on p is given by,

N =

∫
d3r ρ(r) r×E(r) =

∫
d3r ρ(r) r× [E(r0) + . . . ] (4.3.S.7)

where again we expand E(r) about the point r0. To lowest order we then have

N = p×E (4.3.S.8)

Magnetic Dipoles - Force and Torque

Consider a localized current distribution j(r).
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The total force on j due to a slowly varying external magnetic field B is,

F =
1

c

∫
d3r j×B (4.3.S.9)

Expand B about a point r0 in the center of the current distribution j,

B(r) = B(r0) + (r′ ·∇)B(r0) + . . . (4.3.S.10)

Then,

F =
1

c

[∫
d3r j(r)

]
×B(r0) +

1

c

∫
d3r j(r)× (r′ ·∇)B(r0) + . . . (4.3.S.11)

For magnetostatics, we found in our discussion of the magnetic dipole approximation that
∫
d3r j = 0, so the first

term above vanishes. Shifting the integration variable from r to r′, the second term can be written as,

Fα =
εαβγ
c

∫
d3r′ jβ r

′
δ ∂δBγ (4.3.S.12)

This involves the tensor that we also saw in our discussion of the magnetic dipole approximation,

1

c

∫
d3r′ jβ r

′
δ = −1

c

∫
d3r′ r′β jδ =

1

2c

∫
d3r′

[
jβ r

′
δ − r′β jδ

]
= −mσεσβδ (4.3.S.13)

where mσ is the σ component of the magnetic dipole moment m = 1
2c

∫
d3r r× j.

Then,

Fα = εαβγεσβδ(−mσ)∂δBγ = −(δασδγδ − δαδδσγ)mσ∂δBγ = ∂α(m ·B)−mα∇ ·B (4.3.S.14)

Since ∇ ·B = 0, we have,

F = ∇(m ·B) (4.3.S.15)

The torque on m is given by,

N =
1

c

∫
d3r r× (j×B) =

1

c

∫
d3r [j (r ·B)−B (r · j)] (4.3.S.16)

Since B is slowly varying, to lowest order we can take B in the above to be the constant B(r0), and bring it outside
the integral.

The second term in Eq. (4.3.S16) can be written as follows∫
d3r r · j =

∫
d3r j ·∇

(
r2

2

)
as ∇

(
r2

2

)
= r

= −
∫
d3r (∇ · j)

(
r2

2

)
integrating by parts; the surface term → 0 as the current is localized

= 0 as ∇ · j = 0 in magnetostatics

(4.3.S.17)

The first term in Eq. (4.3.S16) involves the tensor we have seen before in the magnetic dipole approximation,∫
d3r j r = −

∫
d3r rj =

1

2

∫
d3r [j r− r j] (4.3.S.18)

So,

N =
1

2c

∫
d3r [j (r ·B)− r (j ·B)] =

1

2c

∫
d3r (r× j)×B (4.3.S.19)
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The integral in the last term above is just the magnetic dipole moment m, so

N = m×B (4.3.S.20)

Energy of an Electric Dipole in an External Field E

We have for the electrostatic energy,

E =
1

8π

∫
d3r E2 (4.3.S.21)

Suppose the charge density ρ that produces E can be broken into two pieces, ρ = ρ1 + ρ2, with E = E1 + E2, where
∇ ·E1 = 4πρ1 and ∇ ·E2 = 4πρ2. Then,

E =
1

8π

∫
d3r

[
E2

1 + E2
2 + 2E1 ·E2

]
(4.3.S.22)

Here the first term is the self energy of ρ1, the second term is the self energy of ρ2, and the third term is the interaction
energy between ρ1 and ρ2.

Using similar arguments as we did earlier, the interaction energy piece can be written as,

Eint =
1

4π

∫
d3rE1 ·E2 =

∫
d3r ρ1 φ2 =

∫
d3r ρ2 φ1 (4.3.S.23)

where E1 = −∇φ1 and E2 = −∇φ2. Here the integrals are over all of space.

Let us apply the above to the interaction energy of an electric dipole in an external field E. With ρ1 the charge
distribution of the dipole, and φ2 the potential of the external electric field E, we have

Eint =

∫
d3r ρ1 φ2 (4.3.S.24)

Assuming φ2 varies slowly on the length scale of ρ1, we can expand to linear order,

φ2(r) = φ2(r0) + (r− r0) ·∇φ2(r0) (4.3.S.25)

where r0 is the center of mass of (or any convenient reference point within) the distribution ρ1. Then

Eint =

∫
d3r ρ1(r) [φ2(r0) + (r− r0) ·∇φ2(r0)]

= qφ2(r0) +

[∫
d3r ρ1(r)(r− r0)

]
·∇φ2(r0)

= qφ2(r0)− p ·E

(4.3.S.26)

where q is the total charge in ρ1, and p is the dipole moment or ρ1 computed with respect to r0 as the origin.

For a neutral charge distribution with q = 0, and so with p independent of the choice of origin, the interaction energy
of the dipole with E is given by,

Eint = −p ·E (4.3.S.27)

Note, Eint does not include the energy needed to make the dipole, nor the energy needed to make E.

The interaction energy Eint is smallest when p is parallel to E, so in a thermal ensemble, electric dipoles tend to align
parallel to an applied E.
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Energy of a Magnetic Dipole in an External Field B

We found above that the force on a magnetic dipole m is

F = ∇(m ·B) (4.3.S.28)

If we regard this force as coming from the gradient of a potential energy U , then F = −∇U , and so we would expect,

U = −m ·B (4.3.S.29)

as the energy of the dipole in the field B. Equivalently, we can regard the energy of the dipole in the field to be
the work one has to do to move the dipole into position from infinity; since the mechanical force we need to apply
to move the dipole must be equal and opposite the the magnetic force above, one then has W = −

∫ r

∞ F · d` =

−
∫ r

∞ ∇(m ·B)d` = −m ·B(r).

This is the correct energy to use in cases where m is due to the intrinsic magnetic moments of an atom or molecule,
that arise from intrinsic electron or nuclear spin. In a thermal ensemble of such moments, the moments will thus tend
to minimize U and align parallel to B, giving a paramagnetic effect.

The answer comes out quite differently if we are talking about a magnetic moment produced by a classical current
loop. To see this, consider what we would get if we tried to do the calculation in a similar way to how we computed
the energy of an electric dipole in an electric field.

We have for the energy of a magnetostatic situation,

E =
1

8π

∫
d3r B2 (4.3.S.30)

Suppose current j that produces B can be divided into two pieces, j = j1+j2, with B = B1+B2, where ∇×B1 = 4π
c j1,

and ∇×B2 = 4π
c j2. Then,

E =
1

8π

∫
d3r

[
B2

1 +B2
2 + 2B1 ·B2

]
(4.3.S.31)

The first term is the self energy of j1, the second term is the self energy of j2, and the third term is the interaction
energy between j1 and j2. We thus have,

Eint =
1

4π

∫
d3rB1 ·B2 =

1

c

∫
d3r j1 ·A2 =

1

c

∫
d3r j2 ·A1 (4.3.S.32)

where B1 = ∇×A1 and B2 = ∇×A2, and the integrals are over all of space.

Now apply this Eint to the energy of a magnetic dipole created by the current j1 to an external magnetic field B given
by A2. We have,

Eint =
1

c

∫
d3r j1 ·A2 =

1

c2

∫
d3r

∫
d3r′

j1(r) · j2(r′)

|r− r′|
(4.3.S.33)

where in the last step we used the solution, A2(r) =
1

c

∫
d3r′

j2(r′)

|r− r′|
, obtained for A2 in the Coulomb gauge.

Assume A2 varies slowly on the length scale of the localized j1, so that we can expand A2(r) about some reference
point r0 that lies somewhere in the middle of the localized j1. Then, to linear order in this expansion,

Eint =
1

c

∫
d2r j1 ·A2(r0) +

1

c

∫
d3r

∑
k,l

j1k(r− r0)l∂lAk(r0) (4.3.S.34)

From our discussion of the magnetic dipole approximation, we had
∫
d3r j = 0 in magnetostatics. Therefore the first

term above vanishes, since A2(r0) is a constant and may be taken outside the integral. We are left with,

Eint =

[
1

c

∫
d3r j1k rl

]
∂lAk(r0) where we use the summation convention with respect to k and l (4.3.S.35)
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Also from our discussion of the magnetic dipole approximation, we had∫
d3r jk rl = −

∫
d3r jl rk =

1

2

∫
d3r [jk rl − jl rk] =

1

2
εnkl

∫
d3r(j× r)n = −εnkl cmn (4.3.S.36)

where mn is the nth component of the magnetic dipole moment of the current, m = 1
2c

∫
d3r r× j.

So we have,

Eint = −mn εnkl ∂lAk = mn εnlk ∂lAk = m · (∇×A) = m ·B (4.3.S.37)

This interaction energy is the same as what we had in Eq. (4.3.S29), except it has the opposite sign! If this were
correct, then in a thermal ensemble, the current loops will want to minimize their energy and so would tend to align
anti-parallel to B, giving a diamagnetic effect!

Why this difference??

1) When we integrate the work done against the magnetostatic force to move m into position from infinity, we found
U = −m ·B.

2) When we compute the interaction energy from Eint =
1

c

∫
d3r j1 ·A2 =

1

c2

∫
d3r

∫
d3r′

j1(r) · j2(r′)

|r− r′|
we found the

energy Eint = +m ·B.

To see which is correct, let us compute the interaction energy (2) directly, using the method of (1).

Consider two loops with currents I1 and I2. What is the work we need to do to quasistatically (i.e., slowly) move
loop 2 in from infinity to its final position with respect to loop 1?

-
The magnetostatic force on loop 2 due to loop 1 is given by the Lorentz force,

F =
I2
c

∮
2

d`2 ×B1 (4.3.S.38)

where the integral is around loop 2, and B1 is the magnetic field produced by loop 1.

Using the Biot-Savart law we can write for B1,

B1(r) =
I1
c

∮
1

d`1 ×
(r− r1)

|r− r1|3
where the integral goes over loop 1 (4.3.S.39)

Therefore, substituting this into F we get

F =
I1I2
c2

∮
1

∮
2

d`2 ×
[d`1 × (r2 − r1)]

|r2 − r1|3
(4.3.S.40)

Using the triple product rule we can write,

d`2 × [d`1 × (r2 − r2)] = d`1[d`2 · (r2 − r1)]− (r2 − r1)(d`1 · d`2) (4.3.S.41)

Substituting the first of these two terms into the expression for the force F above, we get∮
2

d`2 ·
(r2 − r1)

|r2 − r1|3
= −

∮
2

d`2 ·∇2

(
1

|r2 − r1|

)
= 0 (4.3.S.42)
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since the integral of a gradient around a closed loop always vanishes.

So, from the second term of the triple product rule we then get,

F = −I1I2
c2

∮
1

∮
2

d`1 · d`2
(r2 − r1)

|r2 − r1|3
(4.3.S.43)

Now let’s write r2 = R + δr2 where R is the center of loop 2, and δr2 is the position of a segment of loop 2 relative
to R, and use

R + δr2 − r1
|R + δr2 − r1|3

= −∇R

(
1

|R + δr2 − r1|

)
where ∇R differentiates with respect to R (4.3.S.44)

We then get,

F =
I1I2
c2

∮
1

∮
2

d`1 · d`2 ∇R

(
1

|R + δr2 − r1|

)
(4.3.S.45)

Now to move the loop quasistatically, we need to apply a mechanical force that is equal but opposite the the magne-
tostatic force F above, Fmech = −F. Therefore the work we do in moving the loop 2 from infinity to its final position
at R0 in,

Wmech = −
∫ R0

∞
F · dR = −I1I2

c2

∮
1

∮
2

d`1 · d`2
∫ R0

∞
dR ·∇R

(
1

|R + δr2 − r1|

)
(4.3.S.46)

= −I1I2
c2

∮
1

∮
2

d`1 · d`2
|r2 − r1|

where we substituted back r2 = R0 + δr2 (4.3.S.47)

= −M12I1I2 where M12 is the mutual inductance of the two loops (4.3.S.48)

Or, for a more general current distribution, the above becomes

Wmech = −1

c

∫
d3r1

∫
d3r2

j1(r1) · j2(r2)

|r2 − r1|
= −Eint (4.3.S.49)

where Eint is the interaction energy of Eq. (4.3.S33).

Why the minus sign?? Why, in this calculation are we getting the negative of the energy we found from Eint, or
that we found from the inductance of current loops, M12I1I2?

The minus sign we have here is the same minus sign we got when we found U = −m ·B by integrating the force on
the magnetic dipole.

Why don’t we get +
1

c

∫
d3r1

∫
d3r2

j1(r1) · j2(r2)

|r2 − r1|
, with the + sign that we expect from E =

1

8π

∫
d3r B2?

Answer: The answer is that we have left something out!

Faraday’s Law: When we move loop 2, the magnetic flux through loop 2, from the field of loop 1, changes. This
dΦ2/dt creates an electromotive force emf =

∮
d` ·E around the loop that would cause the current in loop 2 to change.

But in our calculation above, we have kept the current I2 fixed. If we are to keep the current in loop 2 fixed at I2,
there must be a battery in the loop that does work to counter this induced emf. Similarly, the flux through loop 1,
due to the field from loop 2, is changing, and so a battery in loop 1 must do work to keep the current in loop 1 fixed
at I1. We need to add to the above calculation of Wmech the work done by the batteries in loops 1 and 2 that keeps
the currents constant.

The emf induced in loop 1 is E1 =
∮
1
d`1 ·E2

The emf induced in loop 2 is E2 =
∮
2
d`2 ·E1
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In both cases we take the direction of integration around the loop to be in the direction of the current.

From Faraday’s law, we have

E1 = −1

c

dΦ1

dt
where Φ1 is the magnetic flux through loop 1 (4.3.S.50)

E2 = −1

c

dΦ2

dt
where Φ2 is the magnetic flux through loop 2 (4.3.S.51)

To keep the current in the loops constant, the batteries need to provide an emf that counters these Faraday induced
emfs. The work done by the batteries per unit time is therefore,

dWbattery

dt
= −E1 I1 − E2 I2 (4.3.S.52)

(the work to move a charge q around loop is Eq, so if I is the rate of charge flowing, the rate of work is EI; we can
also check the units: EI has units of [length·E][q/s]=[length][force/s]=energy/s)

So then

dWbattery

dt
=

1

c

dΦ1

dt
I1 +

1

c

dΦ2

dt
I2 (4.3.S.53)

and

Wbattery =

∫ T

0

dt

[
1

c

dΦ1

dt
I1 +

1

c

dΦ2

dt
I2

]
(4.3.S.54)

where t = 0 is when loop 2 is at infinity, and t = T is when loop 2 is at its final position.

Since the currents I1 and I2 are kept constant as loop 2 moves, we can easily do the time integration to get,

Wbattery =
1

c
Φ1 I1 +

1

c
Φ2 I2 (4.3.S.55)

where Φ1 and Φ2 are the fluxes through the loops when loop 2 is in its final position, and we have assumed that the
fluxes vanish when loop 2 is at infinity.

Since, by the definition of the mutual inductance, Φ1 = cM12I2, and Φ2 = cM21I1 = cM12I1 (since M12 = M21), we
finally have,

Wbattery = 2M12I1I2 (4.3.S.56)

When we add this to the Wmech = −M12I1I2 computed above, we then get,

Wtotal = Wmech +Wbattery = −M12I1I2 + 2M12I1I2 = M12I1I2 = +
1

c

∫
d3r1

∫
d3r2

j1(r1) · j2(r2)

|r2 − r1|
(4.3.S.57)

and so we get back the correct interaction energy Eint that came from 1
4π

∫
d3rB1 ·B2.

Conclusion:

The magnetostatic interaction energy Eint includes the work done to maintain the currents constant as the current
distributions move. Note that to compute Eint correctly, we had to invoke Faraday’s law, and so even in this quasistatic
process of slowly moving loop 2 into position, and computing the magnetostatic energy of the final configuration, we
could not do that strictly in the context of magnetostatics – we need the dynamic effects of Faraday’s law.

When we compute the interaction energy of a current loop dipole m and find Eint = m ·B, this includes the energy
needed to maintain the constant current producing m.

When we integrated the force on the dipole to find the potential energy U = −m · B, we regarded m as fixed, and
so this did not include any contribution to the energy needed to maintain that dipole m at its fixed value. This is
the correct energy expression to use when m comes from intrinsic magnetic moments due to the intrinsic spin of
elementary particles such as the electron or nulceons – these cannot be viewed as arising from a current carrying loop!


