Unit 5-5-supp: Total Internal Reflection Revisited

Consider an EM wave propagating from medium a into medium b. We assume that ϵ_{a} and ϵ_{b} are real and positive, so that the media are transparent. We take μ_{a} and μ_{b} to be real and constant.

We will assume that $\epsilon_{a}>\epsilon_{b}$, or equivalently, that the indices of refraction $n_{a}=\sqrt{\mu_{a} \epsilon_{a}}>\sqrt{\mu_{b} \epsilon_{b}}=n_{b}$. There is thus a critical angle θ_{c} for total internal reflection, $\sin \theta_{c}=n_{b} / n_{a}$, for waves propagating from medium a into medium b. The geometry we consider is as in the diagram below. The plane of incidence is the $x z$ plane.

\mathbf{k}_{0} is the incident wave	θ_{0} is the angle of incidence
\mathbf{k}_{1} is the reflected wave	$\theta_{1}=\theta_{0}$ is the angle of reflection
\mathbf{k}_{2} is the transmitted wave	θ_{2} is the angle of transmission

We know that $\omega_{0}=\omega_{1}=\omega_{2} \equiv \omega$, and that $k_{0 x}=k_{1 x}=k_{2 x}$ (the k_{y} components for each wave vanish).
From the dispersion relation in medium a we have,

$$
\begin{equation*}
k_{0}^{2}=k_{0 x}^{2}+k_{0 z}^{2}=\frac{\omega^{2}}{c^{2}} \mu_{a} \epsilon_{a}=\frac{\omega^{2}}{c^{2}} n_{a}^{2} \quad \text { with } k_{0 x}=k_{0} \sin \theta_{0} \text { and } k_{0 z}=k_{0} \cos \theta_{0} \tag{5.5.S.1}
\end{equation*}
$$

From the dispersion relation in medium b we have (using $k_{2 x}=k_{0 x}$),

$$
\begin{equation*}
k_{2}^{2}=k_{2 x}^{2}+k_{2 z}^{2}=k_{0 x}^{2}+k_{2 z}^{2}=\frac{\omega^{2}}{c^{2}} \mu_{b} \epsilon_{b}=\frac{\omega^{2}}{c^{2}} n_{b}^{2} \tag{5.5.S.2}
\end{equation*}
$$

So this gives,

$$
\begin{equation*}
k_{2 z}^{2}=\frac{\omega^{2}}{c^{2}} n_{b}^{2}-k_{0 x}^{2}=\frac{\omega^{2}}{c^{2}} n_{b}^{2}-k_{0}^{2} \sin ^{2} \theta_{0}=\frac{\omega^{2}}{c^{2}} n_{b}^{2}-\frac{\omega^{2}}{c^{2}} n_{a}^{2} \sin ^{2} \theta_{0}=\frac{\omega^{2}}{c^{2}}\left[n_{b}^{2}-n_{a}^{2} \sin ^{2} \theta_{0}\right] \tag{5.5.S.3}
\end{equation*}
$$

Now, writing $n_{a} \sin \theta_{c}=n_{b}$, we get,

$$
\begin{equation*}
k_{2 z}^{2}=\frac{\omega^{2}}{c^{2}} n_{a}^{2}\left[\sin ^{2} \theta_{c}-\sin ^{2} \theta_{0}\right] \tag{5.5.S.4}
\end{equation*}
$$

1) When $\theta_{0}<\theta_{c}$ we see that $k_{2 z}^{2}>0$ and so $k_{2 z}$ is real valued, and the angle $\theta_{2}=\arctan \left(k_{2 x} / k_{2 z}\right)$ is well defined and in the region ($0, \pi / 2$). We therefore get Snell's Law,

$$
\begin{equation*}
k_{0 x}=k_{2 x} \quad \Rightarrow \quad k_{0} \sin \theta_{0}=k_{2} \sin \theta_{2} \quad \Rightarrow \quad n_{a} \sin \theta_{0}=n_{b} \sin \theta_{2} \tag{5.5.S.5}
\end{equation*}
$$

2) However when $\theta_{0}>\theta_{c}$, we see from Eq. (5.5.4) that $k_{2 z}^{2}<0$ and so $k_{2 z}$ is imaginary,

$$
\begin{equation*}
k_{2 z}=\frac{\omega}{c} n_{a} \sqrt{\left[\sin ^{2} \theta_{0}-\sin ^{2} \theta_{c}\right]} i \tag{5.5.S.6}
\end{equation*}
$$

This is total internal reflection. For $\theta_{0}>\theta_{c}$ we see that the transmitted wave has a real valued component in the x-direction, $k_{2 x}=k_{0 x}=k_{0} \sin \theta_{0}$, but its component in the z-direction is pure imaginary, which means the amplitudes of the fields decay exponentially as z increases. The wave does not propagate into medium b.

We can define a penetration length by

$$
\begin{equation*}
\ell=\frac{1}{\left|k_{2 z}\right|}=\frac{c}{\omega n_{a}} \frac{1}{\sqrt{\left[\sin ^{2} \theta_{0}-\sin ^{2} \theta_{c}\right]}} \tag{5.5.S.7}
\end{equation*}
$$

Just at $\theta_{0}=\theta_{c}$ we have $\ell \rightarrow \infty$, reflecting that the wave does propagate into medium b as soon as θ_{0} decreases below θ_{c}. As θ_{0} increases above θ_{c}, ℓ decreases. Using $\sin \theta_{c}=n_{b} / n_{a}$, we find that the smallest value of ℓ, when $\theta_{0}=\pi / 2$, is

$$
\begin{equation*}
\ell_{\min }=\frac{c}{\omega n_{a}} \frac{1}{\sqrt{1-\sin ^{2} \theta_{c}}}=\frac{c}{\omega n_{a}} \frac{1}{\cos \theta_{c}}=\frac{c}{\omega n_{a}} \frac{n_{a}}{\sqrt{n_{a}^{2}-n_{b}^{2}}}=\frac{c}{\omega} \frac{1}{\sqrt{n_{a}^{2}-n_{b}^{2}}} \tag{5.5.S.8}
\end{equation*}
$$

