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Unit 2-10: The Average Energy vs the Most Probable Energy in the Canonical Ensemble; Stirling’s
Formula

In the previous section we showed how the relative width of the canonical probability density for the energy P(E)
scaled to zero in the thermodynamic limit N → ∞. Here we look at some other aspects of this distribution. In
particular we look at the difference between the average energy and the most probable energy.

In our discussion of energy fluctuations in the canonical ensemble in Notes 2-9, we expanded E − TS(E) to second
order about the minimizing energy Ē,

E − TS(E) ≈ Amicro +
δE2

2TCV
(2.10.1)

This caused the probability density P(E) ∝ e−[E−TS(E)]/kBT to be a Gaussian distribution in δE = E − Ē, with Ē
the value of energy that minimizes E − TS, or equivalently the value of energy that maximizes the probability P(E).
So Ē is the most probable value of the energy. Since, at this level of approximation, P(E) is symmetric in δE, one
has that 〈δE〉 = 0 and so Ē is also the average energy 〈E〉. To see the difference between the average value 〈E〉 and
the most probable value Ē, it is therefore necessary to continue the expansion in Eq. (2.10.1) to third order,

E − TS(E) ≈ Amicro +
δE2

2TCV
− 1

3!
T

(
∂3S

∂E3

)∣∣∣∣
E=Ē

δE3 (2.10.2)

Note, since S ∼ N and E ∼ N then (∂3S/∂E3) ∼ 1/N2. So we can write,

E − TS(E) ≈ Amicro +
δE2

2TCV
− γ

N2
δE3 (2.10.3)

where γ is some intensive parameter that does not increase as N increases (though γ can vary with T ).

Now we compute the difference between the average and the most probable energies

〈δE〉 = 〈E〉 − Ē (2.10.4)

We have

〈δE〉 =

∫
dδE

∆E
e−[E−TS(E)]/kBT δE∫

dδE

∆E
e−[E−TS(E)]/kBT

(2.10.5)

=

∫
dδE exp

[
−δE2

2kBT 2CV
+

γδE3

N2kBT

]
δE∫

dδE exp

[
−δE2

2kBT 2CV
+

γδE3

N2kBT

] the e−Amicro/kBT factors cancel (2.10.6)

=

∫
dδE exp

[
−δE2

2kBT 2CV

] (
1 +

γδE3

N2kBT

)
δE∫

dδE exp

[
−δE2

2kBT 2CV

] (
1 +

γδE3

N2kBT

) expanding the δE3 term in the exponentials

(2.10.7)

The above has the form,

〈δE〉 =

∫
dx e−x

2/2σ2 (
x+ ax4

)
∫
dx e−x

2/2σ2 (
1 + ax3

) with σ2 = kBT
2CV and a =

γ

N2kBT
. (2.10.8)
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The integrals go from x = −Ē to +∞. Since the width of the Gaussian exponential is σ ∼
√
CV ∼

√
N , while

Ē ∼ N , we can replace the lower limit by −∞, and then do the Gaussian integrals. Because Gaussian distributions
are symmetric, only the even moments are non-vanishing. We therefore get,

〈δE〉 =

∫
dx e−x

2/2σ2 (
ax4
)

∫
dx e−x

2/2σ2
=

a

∫
dx e−x

2/2σ2 (
x4
)

√
2πσ2

= a〈x4〉 = 3aσ4 (2.10.9)

Thus,

〈δE〉 = 3

(
γ

N2kBT

)(
kBT

2CV
)2 ∼ ( 1

N2

)(
N2
)
∼ O(1) (2.10.10)

Therefore the relative difference between the average and the most probable energies scales as,

〈E〉 − Ē
〈E〉

=
〈δE〉
〈E〉

∼ 1

N
→ 0 as N →∞. (2.10.11)

So, as N →∞, the relative difference between the average and the most probable energies scales to zero faster than
the relative width of the distribution,

√
〈δE2〉/〈E〉 ∼ 1/

√
N .

Now consider the probability density P(E) as a whole. We know that in the thermodynamic limit N → ∞, 〈E〉 ∼
Ē ∼ N , while the width

√
〈E2〉 − 〈E〉2 ∼

√
N . Thus the location of the peak in P(E) increases faster than the width

increases, and so the relative width ∼ 1/
√
N vanishes.

To look at the N → ∞ limiting form of P(E) we need instead to look at the probability density Pu for the energy
per particle u = E/N , since 〈u〉 approaches a finite constant as N →∞. We have,

Pu(u)du = P(E)dE ⇒ Pu(u) = P(E)
dE

du
= P(E)N (2.10.12)

Using Ω(E) = eS(E)/kB , we therefore have from Notes 2-8,

Pu(u) = N
Ω(E) e−E/kBT

∆E QN
= N

e−[E−TS(E)]/kBT∫
dE e−[E−TS(E)]/kBT

E ≡ uN (2.10.13)

We can then expand in δE = E − Ē about Ē, the minimum of E − TS(E),

E − TS(E) = Ē − TS(Ē) + δE − T
∞∑
n=1

1

n!

(
∂nS

∂En

)∣∣∣∣
E=Ē

δEn (2.10.14)

The first two terms give just Ē − TS(Ē) = Amicro. As was shown in Notes 2-9, the terms linear in δE cancel. The
coefficient of the δEn term is of order S/En ∼ 1/Nn−1. To leading order, therefore, we can keep just the lowest n = 2
term. All other terms will give corrections that become negligible compared to the leading term as N →∞. Thus we
can stick with the approximation of Eq. (2.10.1).

So, using Eq. (2.10.1), E/N = u, and δu = u− Ē/N = u− ū, we then get

Pu(u) =
e−δu

2/2σ2∫
dδu e−δu

2/2σ2
=

e−δu
2/2σ2

√
2πσ2

where σ2 = kBT
2CV /N

2. (2.10.15)

We thus see that, as N →∞, the probability density Pu(u) becomes a Gaussian distribution centered at u = ū (i.e.
δu = 0), with width σ =

√
kBT 2CV /N ∼ 1/

√
N .

Thus, in the thermodynamic limit N →∞, the width of that Gaussian distribution vanishes, and Pu(u) approaches
the delta function δ(u−ū). The canonical ensemble at temperature T , such that the most probable energy per particle
is ū = Ē/N , becomes the same as the microcanonical ensemble at fixed energy per particle ū.
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Stirling’s Formula

Just for fun, we will now use the saddle point approximation to derive Stirling’s formula for n!

Consider the integral,

In =

∫ ∞
0

dxxn e−x (2.10.16)

We can integrate by parts to get,

In = −
[
xn e−x

]∞
0

+

∫ ∞
0

dxnxn−1 e−x (2.10.17)

The boundary term vanishes at its limits so,

In = n

∫ ∞
0

dxxn−1 e−x = nIn−1 (2.10.18)

Apply the above recursively to get,

In = nIn−1 = n(n− 1)In−2 = n(n− 1)(n− 2)In−3 = n! I0 (2.10.19)

Since I0 =

∫ ∞
0

dx e−x = 1, we thus have,

In = n! (2.10.20)

Now we will evaluate In using the saddle point approximation.

Define U(x) = −x+ n lnx. Then,

In =

∫ ∞
0

dx eU(x) (2.10.21)

The maximum of U(x) is when dU/dx = −1 + n/x = 0, or at x̄ = n. We can therefore expand about this maximum.
Using,

U(x) = −x+ n lnx ⇒ U(x̄) = −n+ n lnn

U ′(x) = −1 + n/x ⇒ U ′(x̄) = 0

U ′′(x) = −n/x2 ⇒ U ′′(x̄) = −1/n

U ′′′(x) = 2n/x3 ⇒ U ′′′(x̄) = 2/n2

U ′′′′(x) = −6n/x4 ⇒ U ′′′′(x̄) = −6/n3

(2.10.22)

we expand in δx = x− x̄ to get

U(x) ' −n+ n lnn− 1

2!

δx2

n
+

1

3!

2δx3

n2
− 1

4!

6δx4

n3
+ · · · (2.10.23)

= −n+ n lnn− δx2

2n
+
δx3

3n2
− δx4

4n3
+ · · · (2.10.24)

Then,

In = n! =

∫ ∞
0

dx eU(x) = e−n+n lnn

∫ ∞
0

dx e−δx
2/2n e[(δx3/3n2)−(δx4/4n3)+···] (2.10.25)
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The first exponential term in the integral has the form of a Gaussian with a peak at x = x̄ = n (i.e. δx = 0) and
width σ =

√
n. As n gets large, the location of the peak in the integrand therefore increases much faster than the

width of the integrand, and so we can replace the lower limit of the integration from 0 to −∞.

The argument of the second exponential in the integral consists of terms of order δxm/nm−1. Since the width of
the integrand is of order |δx| ∼ σ ∼

√
n, these terms are then of order ∼ σm/nm−1 ∼ nm/2/nm−1 ∼ n1−m/2, where

m ≥ 3. These terms are all therefore small as n gets large, and we can therefore expand the second exponential in
the integral.

Using the above, and shifting the integration variable from x to δx, we have,

In = n! = e−n+n lnn

∫ ∞
−∞

dδx eδx
2/2n

[
1 +

δx3

3n2
− δx4

4n3
+O

(
δx5

n4

)]
(2.10.26)

= e−n+n lnn
√

2πn

[
1 +
〈δx3〉
3n3

− 〈δx
4〉

4n3
+ · · ·

]
(2.10.27)

where 〈δxm〉 represents the average value of δxm for a Gaussian distribution of mean zero and width σ =
√
n. We

therefore have 〈δx3〉 = 0 and 〈δx4〉 ∼ σ4 ∼ n2.

So,

In = n! = e−n+n lnn
√

2πn

[
1 +O

(
1

n

)]
(2.10.28)

And so,

lnn! = n lnn− n+
1

2
lnn+

1

2
ln 2π +O

(
1

n

)
(2.10.29)

The first two terms on the right give Stirling’s formula, the next terms are higher order corrections.


