Unit 2-11: Factorization of the Canonical Partition Function for Non-Interacting Particles
Consider a system of N identical non-interacting particles. Let q; be the three spatial coordinates of particle i, and

p; are the corresponding momenta. The Hamiltonian H of the system is then the sum of uncoupled one-particle
Hamiltonians H™),

N
H{{aipi}] =Y HY (qi, pi) (2.11.1)

i=1
H(l)(qi, p:) depends only on the degrees of freedom of particle i.

We can then write for the N-particle canonical partition function,
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If we define the one-particle partition function,

1
QUTV) =5 /dch’dpi o M (@ip) (2.11.4)

then the N-particle partition function is,

1
Qn = b Q)Y for identical non-interacting particles (2.11.5)

and the Helmholtz free energy is then,

A= —kpTInQy = —kBT{N nQ; —In N!] - —kBT[N InQ, — NInN + N} using Stirling’s formula
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= —kgTN (1 +1In [?\;}) for identical non-interacting particles (2.11.7)
The Ideal Gas
Let us now apply the above to the ideal gas of point particles. Here,
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The momenta can go from —oo to 400, while the spatial coordinates are confined to a box of volume V. We then
have for the one-particle partition function,
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The last step follows from the (by now hopefully familiar) result, [*_dx e=2"/20 = \/2702. Here 02 = m/B, and

there are three integrals, one each for p,, p, and p., hence the factor (2mrm/ 5)3/ 2,



Thus we have for the one-particle and the N-particle partition functions,
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The Helmbholtz free energy is then given by Eq. (2.11.7),

A(T,V,N) = —kgTN (1 +1In {?\;D = —kgTN (1 +1In LL?’VN (QﬁkaT)S/QD (2.11.11)

We can now compute the average energy. From Eq. (2.8.20), and using 8 = 1/kpT, we have,
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= §N (5) = §NkBT and we regain the familiar result (2.11.14)

We can now compute the entropy.

oA\ % 2]\ |3 1
S(T,V,N) = — <3T)V,N = kN (1 +1n {th (2rmkpT) D + kBTN <T> (2.11.15)
5 |4 3/2

2 F
Substitute in kT = 3N to get,
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and we have recovered the Sackur-Tetrode equation of Eq. (2.74). T hope you are convinced that this derivation, using
the canonical ensemble, is simpler than our previous derivation of S from the microcanonical Q(E,V, N).

It is perhaps worth mentioning (although I have never used this) that since @y is the Laplace transform of €2, then
Q is the inverse Laplace transform of (). Formally, we have,
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So we can say that Qn (/) is the Laplace transform of = (I will only write the variable E, and not also V and N,
because it is E that is the transform variable).
" : Therefore 2E) is the inverse Laplace transform of Qn(3)
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where 3’ = Re[] = 0" and the contour of integration is in the complex
B plane as shown in the sketch.




Maxwell Velocity Distribution Revisited

In Notes 2-8 we wrote Eq. (2.8.13) for the density matrix for the canonical ensemble,

H[{ai,pi}]/ksT

A (2.11.20)
/d3q d3p e~ *la;p;Y/ksT

with the normalization that / d*q;dp; p({q;,p;}) = 1. In our present notation, q; gives the three spatial coordinates

of particle ¢, and p; are the corresponding momenta. The density matrix p({q;, p;}) is the probability density, per
unit volume of phase space, that the system will be found in the state at {q;, p;}.

If we want the probability density P(px) that one particular particle k£ will have momentum py, we should integrate
the probability density p({q;, p;}) over all degrees of freedom ezcept for p.
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where H is a product over all degrees of freedom except py.
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For a general Hamiltonian, with interactions between the degrees of freedom, the above integrations can be difficult
to do. But for non-interacting particles, where the degrees of freedom of one particle are uncoupled from those of the
other particles, these integrals are easy!

When
H[{a;pi}] ZH( (i, pi) (2.11.22)

then one has,
o= BHIaipi}] — (=B H W (aipi) — H o= BAH Y (@ip:) (2.11.23)
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and the probability distribution P(py) becomes
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where all the terms for particles i # k in the numerator are exactly cancelled out by the corresponding terms in the
denominator.

For the ideal gas, H(l)(q, p) = p?/2m is independent of q. Hence the integrals on qj in the numerator and the
denominator of the above each give a factor of the volume V', and then cancel. We are left with,
P(pr) e ri/im e pk/ambeT (2.11.26)
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Setting px = mvy, with vy the velocity of particle k, and using P(v)d% = P(p)d» = P(v) = m>P(p), we then
get for the distribution of the velocity v of particle k,

PV) = (s v o~/ 2hnT (2.11.27)
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which is just the Maxwell velocity distribution we found from kinetic theory in Notes 2-1.

An important reminder!
1) In the Maxwell probability distribution we have P(v) o e=#mv*/2m — o=Bexn

Here P(v) is the probability density for a property of a single particle, and the Boltzmann factor that appears involves
the energy of that single particle, in this case its kinetic energy ey, = p?/2m. This result holds rigorously only in the
limit of non-interacting particles.

2) In the canonical ensemble we have that the probability for the system to be in a particular state ¢ with total energy
E; is P; oc e PP

Here P; is the probability for the entire system to be found in state i (for a classical system of particles, state ¢ would
correspond to some position {g;, p;} in 6 N-dimensional phase space), and the Boltzmann factor that appears involves
the total energy E; of the entire system, and 4 specifies the canonical coordinates of all particles (not just a particular
particle). This result holds generally for any type of system, no matter what are the interactions among the degrees
of freedom.



