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Unit 2-11: Factorization of the Canonical Partition Function for Non-Interacting Particles

Consider a system of N identical non-interacting particles. Let qi be the three spatial coordinates of particle i, and
pi are the corresponding momenta. The Hamiltonian H of the system is then the sum of uncoupled one-particle
Hamiltonians H(1),

H[{qi,pi}] =

N∑
i=1

H(1)(qi,pi) (2.11.1)

H(1)(qi,pi) depends only on the degrees of freedom of particle i.

We can then write for the N -particle canonical partition function,

QN (T, V ) =
1

N !h3N

(
N∏
i=1

∫
dqidpi

)
e−βH =

1

N !h3N

(
N∏
i=1

∫
dqidpi

)
e−β

∑
j H

(1)(qj ,pj) (2.11.2)

=
1

N !

N∏
i=1

(
1

h3

∫
dqidpi e−βH

(1)(qi,pi)

)
(2.11.3)

If we define the one-particle partition function,

Q1(T, V ) =
1

h3

∫
dqidpi e−βH

(1)(qi,pi) (2.11.4)

then the N -particle partition function is,

QN =
1

N !
(Q1)

N
for identical non-interacting particles (2.11.5)

and the Helmholtz free energy is then,

A = −kBT lnQN = −kBT
[
N lnQ1 − lnN !

]
= −kBT

[
N lnQ1 −N lnN +N

]
using Stirling’s formula

(2.11.6)

= −kBTN
(

1 + ln

[
Q1

N

])
for identical non-interacting particles (2.11.7)

The Ideal Gas

Let us now apply the above to the ideal gas of point particles. Here,

H(1)(q,p) =
p2

2m
p2 = |p|2 (2.11.8)

The momenta can go from −∞ to +∞, while the spatial coordinates are confined to a box of volume V . We then
have for the one-particle partition function,

Q1 =
1

h3

∫
V

d3q

∫ ∞
−∞

d3p e−βp
2/2m =

V

h3

∫ ∞
−∞

d3p e−βp
2/2m =

V

h3

(
2πm

β

)3/2

(2.11.9)

The last step follows from the (by now hopefully familiar) result,
∫∞
−∞ dx e−x

2/2σ =
√

2πσ2. Here σ2 = m/β, and

there are three integrals, one each for px, py and pz, hence the factor (2πm/β)3/2.
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Thus we have for the one-particle and the N -particle partition functions,

Q1 =
V

h3
(2πmkBT )

3/2 ⇒ QN =
1

N !

(
V

h3

)N
(2πmkBT )

3N/2
(2.11.10)

The Helmholtz free energy is then given by Eq. (2.11.7),

A(T, V,N) = −kBTN
(

1 + ln

[
Q1

N

])
= −kBTN

(
1 + ln

[
V

h3N
(2πmkBT )

3/2

])
(2.11.11)

We can now compute the average energy. From Eq. (2.8.20), and using β = 1/kBT , we have,

〈E〉 = −
(
∂(−βA)

∂β

)
V,N

= − ∂

∂β

(
N +N ln

[
V

h3N
(2πmkBT )

3/2

])
(2.11.12)

= − ∂

∂β

(
N lnβ−3/2 +N ln

[
stuff independent of β

])
(2.11.13)

=
3

2
N

(
1

β

)
=

3

2
NkBT and we regain the familiar result (2.11.14)

We can now compute the entropy.

S(T, V,N) = −
(
∂A

∂T

)
V,N

= kBN

(
1 + ln

[
V

h3N
(2πmkBT )

3/2

])
+

3

2
kBTN

(
1

T

)
(2.11.15)

=
5

2
kBN + kBN ln

[
V

h3N
(2πmkBT )

3/2

]
(2.11.16)

Substitute in kBT =
2

3

E

N
to get,

S(E, V,N) =
5

2
kBN + kBN ln

[
V

h3N

(
4πmE

3N

)3/2
]

(2.11.17)

and we have recovered the Sackur-Tetrode equation of Eq. (2.74). I hope you are convinced that this derivation, using
the canonical ensemble, is simpler than our previous derivation of S from the microcanonical Ω(E, V,N).

It is perhaps worth mentioning (although I have never used this) that since QN is the Laplace transform of Ω, then
Ω is the inverse Laplace transform of QN . Formally, we have,

QN (β) =

∫
dE

∆E
Ω(E) e−βE (2.11.18)

So we can say that QN (β) is the Laplace transform of
Ω(E)

∆E
(I will only write the variable E, and not also V and N ,

because it is E that is the transform variable).

p
"

contour lies
←
gait to the right

n of the imaginary
axis

O f
'

Therefore
Ω(E)

∆E
is the inverse Laplace transform of QN (β),

Ω(E)

∆E
=

1

2πi

∫ β′+i∞

β′−i∞
dβ QN (β) e−βE =

1

2π

∫ ∞
−∞

dβ′′QN (β′ + iβ′′) ei(β
′+iβ′′)

(2.11.19)

where β′ = Re[β] = 0+ and the contour of integration is in the complex
β plane as shown in the sketch.
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Maxwell Velocity Distribution Revisited

In Notes 2-8 we wrote Eq. (2.8.13) for the density matrix for the canonical ensemble,

ρ({qi,pi}) =
e−H[{qi,pi}]/kBT∫

d3qjd
3pj e−H[{qj ,pj}]/kBT

(2.11.20)

with the normalization that

∫
d3qjd

3pj ρ({qj ,pj}) = 1. In our present notation, qi gives the three spatial coordinates

of particle i, and pi are the corresponding momenta. The density matrix ρ({qi,pi}) is the probability density, per
unit volume of phase space, that the system will be found in the state at {qi,pi}.

If we want the probability density P(pk) that one particular particle k will have momentum pk, we should integrate
the probability density ρ({qi,pi}) over all degrees of freedom except for pk.

P(pk) =

∏
i

′
∫
d3qi

∫
d3pi e−βH[{qi,pi}]

∏
j

∫
d3qj

∫
d3pj e−βH[{qj ,pj}]

(2.11.21)

where
∏
i

′
is a product over all degrees of freedom except pk.

For a general Hamiltonian, with interactions between the degrees of freedom, the above integrations can be difficult
to do. But for non-interacting particles, where the degrees of freedom of one particle are uncoupled from those of the
other particles, these integrals are easy!

When

H[{qipi}] =
∑
i

H(1)(qi,pi) (2.11.22)

then one has,

e−βH[{qi,pi}] = e−β
∑

iH
(1)(qi,pi) =

∏
i

e−βH
(1)(qipi) (2.11.23)

and the probability distribution P(pk) becomes

P(pk) =

∫
d3qk e−βH

(1)(qkpk)
∏
i6=k

∫
d3qid

3pi e−βH
(1)(qi,pi)

∏
i

∫
d3qid

3pi e−βH
(1)(qi,pi)

(2.11.24)

=

∫
d3qk e−βH

(1)(qkpk)∫
d3qk

∫
d3pk e−βH

(1)(qkpk)
(2.11.25)

where all the terms for particles i 6= k in the numerator are exactly cancelled out by the corresponding terms in the
denominator.

For the ideal gas, H(1)(q,p) = p2/2m is independent of q. Hence the integrals on qk in the numerator and the
denominator of the above each give a factor of the volume V , and then cancel. We are left with,

P(pk) =
e−βp

2
k/2m∫

d3pk e−βp
2
k/2m

=
e−p

2
k/2mkBT

(2πmkBT )
3/2

(2.11.26)
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Setting pk = mvk, with vk the velocity of particle k, and using P(v)d3v = P(p)d3p ⇒ P(v) = m3P(p), we then
get for the distribution of the velocity v of particle k,

P(v) =

(
m

2πkBT

)3/2

e−mv
2/2kBT (2.11.27)

which is just the Maxwell velocity distribution we found from kinetic theory in Notes 2-1.

An important reminder!

1) In the Maxwell probability distribution we have P(v) ∝ e−βmv
2/2m = e−βεkin

Here P(v) is the probability density for a property of a single particle, and the Boltzmann factor that appears involves
the energy of that single particle, in this case its kinetic energy εkin = p2/2m. This result holds rigorously only in the
limit of non-interacting particles.

2) In the canonical ensemble we have that the probability for the system to be in a particular state i with total energy
Ei is Pi ∝ e−βEi .

Here Pi is the probability for the entire system to be found in state i (for a classical system of particles, state i would
correspond to some position {qi, pi} in 6N -dimensional phase space), and the Boltzmann factor that appears involves
the total energy Ei of the entire system, and i specifies the canonical coordinates of all particles (not just a particular
particle). This result holds generally for any type of system, no matter what are the interactions among the degrees
of freedom.


