## Unit 2-11: Factorization of the Canonical Partition Function for Non-Interacting Particles

Consider a system of $N$ identical non-interacting particles. Let $\mathbf{q}_{i}$ be the three spatial coordinates of particle $i$, and $\mathbf{p}_{i}$ are the corresponding momenta. The Hamiltonian $\mathcal{H}$ of the system is then the sum of uncoupled one-particle Hamiltonians $\mathcal{H}^{(1)}$,

$$
\begin{equation*}
\mathcal{H}\left[\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right]=\sum_{i=1}^{N} \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right) \tag{2.11.1}
\end{equation*}
$$

$\mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)$ depends only on the degrees of freedom of particle $i$.
We can then write for the $N$-particle canonical partition function,

$$
\begin{align*}
Q_{N}(T, V) & =\frac{1}{N!h^{3 N}}\left(\prod_{i=1}^{N} \int d \mathbf{q}_{i} d \mathbf{p}_{i}\right) \mathrm{e}^{-\beta \mathcal{H}}=\frac{1}{N!h^{3 N}}\left(\prod_{i=1}^{N} \int d \mathbf{q}_{i} d \mathbf{p}_{i}\right) \mathrm{e}^{-\beta \sum_{j} \mathcal{H}^{(1)}\left(\mathbf{q}_{j}, \mathbf{p}_{j}\right)}  \tag{2.11.2}\\
& =\frac{1}{N!} \prod_{i=1}^{N}\left(\frac{1}{h^{3}} \int d \mathbf{q}_{i} d \mathbf{p}_{i} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)}\right) \tag{2.11.3}
\end{align*}
$$

If we define the one-particle partition function,

$$
\begin{equation*}
Q_{1}(T, V)=\frac{1}{h^{3}} \int d \mathbf{q}_{i} d \mathbf{p}_{i} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)} \tag{2.11.4}
\end{equation*}
$$

then the $N$-particle partition function is,

$$
\begin{equation*}
Q_{N}=\frac{1}{N!}\left(Q_{1}\right)^{N} \quad \text { for identical non-interacting particles } \tag{2.11.5}
\end{equation*}
$$

and the Helmholtz free energy is then,

$$
\begin{align*}
A & =-k_{B} T \ln Q_{N}=-k_{B} T\left[N \ln Q_{1}-\ln N!\right]=-k_{B} T\left[N \ln Q_{1}-N \ln N+N\right] \quad \text { using Stirling's formula }  \tag{2.11.6}\\
& =-k_{B} T N\left(1+\ln \left[\frac{Q_{1}}{N}\right]\right) \quad \text { for identical non-interacting particles } \tag{2.11.7}
\end{align*}
$$

## The Ideal Gas

Let us now apply the above to the ideal gas of point particles. Here,

$$
\begin{equation*}
\mathcal{H}^{(1)}(\mathbf{q}, \mathbf{p})=\frac{p^{2}}{2 m} \quad p^{2}=|\mathbf{p}|^{2} \tag{2.11.8}
\end{equation*}
$$

The momenta can go from $-\infty$ to $+\infty$, while the spatial coordinates are confined to a box of volume $V$. We then have for the one-particle partition function,

$$
\begin{equation*}
Q_{1}=\frac{1}{h^{3}} \int_{V} d^{3} q \int_{-\infty}^{\infty} d^{3} p \mathrm{e}^{-\beta p^{2} / 2 m}=\frac{V}{h^{3}} \int_{-\infty}^{\infty} d^{3} p \mathrm{e}^{-\beta p^{2} / 2 m}=\frac{V}{h^{3}}\left(\frac{2 \pi m}{\beta}\right)^{3 / 2} \tag{2.11.9}
\end{equation*}
$$

The last step follows from the (by now hopefully familiar) result, $\int_{-\infty}^{\infty} d x \mathrm{e}^{-x^{2} / 2 \sigma}=\sqrt{2 \pi \sigma^{2}}$. Here $\sigma^{2}=m / \beta$, and there are three integrals, one each for $p_{x}, p_{y}$ and $p_{z}$, hence the factor $(2 \pi m / \beta)^{3 / 2}$.

Thus we have for the one-particle and the $N$-particle partition functions,

$$
\begin{equation*}
Q_{1}=\frac{V}{h^{3}}\left(2 \pi m k_{B} T\right)^{3 / 2} \quad \Rightarrow \quad Q_{N}=\frac{1}{N!}\left(\frac{V}{h^{3}}\right)^{N}\left(2 \pi m k_{B} T\right)^{3 N / 2} \tag{2.11.10}
\end{equation*}
$$

The Helmholtz free energy is then given by Eq. (2.11.7),

$$
\begin{equation*}
A(T, V, N)=-k_{B} T N\left(1+\ln \left[\frac{Q_{1}}{N}\right]\right)=-k_{B} T N\left(1+\ln \left[\frac{V}{h^{3} N}\left(2 \pi m k_{B} T\right)^{3 / 2}\right]\right) \tag{2.11.11}
\end{equation*}
$$

We can now compute the average energy. From Eq. (2.8.20), and using $\beta=1 / k_{B} T$, we have,

$$
\begin{align*}
\langle E\rangle=-\left(\frac{\partial(-\beta A)}{\partial \beta}\right)_{V, N} & =-\frac{\partial}{\partial \beta}\left(N+N \ln \left[\frac{V}{h^{3} N}\left(2 \pi m k_{B} T\right)^{3 / 2}\right]\right)  \tag{2.11.12}\\
& =-\frac{\partial}{\partial \beta}\left(N \ln \beta^{-3 / 2}+N \ln [\text { stuff independent of } \beta]\right)  \tag{2.11.13}\\
& =\frac{3}{2} N\left(\frac{1}{\beta}\right)=\frac{3}{2} N k_{B} T \quad \text { and we regain the familiar result } \tag{2.11.14}
\end{align*}
$$

We can now compute the entropy.

$$
\begin{align*}
S(T, V, N)=-\left(\frac{\partial A}{\partial T}\right)_{V, N} & =k_{B} N\left(1+\ln \left[\frac{V}{h^{3} N}\left(2 \pi m k_{B} T\right)^{3 / 2}\right]\right)+\frac{3}{2} k_{B} T N\left(\frac{1}{T}\right)  \tag{2.11.15}\\
& =\frac{5}{2} k_{B} N+k_{B} N \ln \left[\frac{V}{h^{3} N}\left(2 \pi m k_{B} T\right)^{3 / 2}\right] \tag{2.11.16}
\end{align*}
$$

Substitute in $k_{B} T=\frac{2}{3} \frac{E}{N}$ to get,

$$
\begin{equation*}
S(E, V, N)=\frac{5}{2} k_{B} N+k_{B} N \ln \left[\frac{V}{h^{3} N}\left(\frac{4 \pi m E}{3 N}\right)^{3 / 2}\right] \tag{2.11.17}
\end{equation*}
$$

and we have recovered the Sackur-Tetrode equation of Eq. (2.74). I hope you are convinced that this derivation, using the canonical ensemble, is simpler than our previous derivation of $S$ from the microcanonical $\Omega(E, V, N)$.

It is perhaps worth mentioning (although I have never used this) that since $Q_{N}$ is the Laplace transform of $\Omega$, then $\Omega$ is the inverse Laplace transform of $Q_{N}$. Formally, we have,

$$
\begin{equation*}
Q_{N}(\beta)=\int \frac{d E}{\Delta E} \Omega(E) \mathrm{e}^{-\beta E} \tag{2.11.18}
\end{equation*}
$$

So we can say that $Q_{N}(\beta)$ is the Laplace transform of $\frac{\Omega(E)}{\Delta E}$ (I will only write the variable $E$, and not also $V$ and $N$, because it is $E$ that is the transform variable).


Therefore $\frac{\Omega(E)}{\Delta E}$ is the inverse Laplace transform of $Q_{N}(\beta)$,
$\frac{\Omega(E)}{\Delta E}=\frac{1}{2 \pi i} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+i \infty} d \beta Q_{N}(\beta) \mathrm{e}^{-\beta E}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \beta^{\prime \prime} Q_{N}\left(\beta^{\prime}+i \beta^{\prime \prime}\right) \mathrm{e}^{i\left(\beta^{\prime}+i \beta^{\prime \prime}\right)}$
where $\beta^{\prime}=\operatorname{Re}[\beta]=0^{+}$and the contour of integration is in the complex $\beta$ plane as shown in the sketch.

## Maxwell Velocity Distribution Revisited

In Notes 2-8 we wrote Eq. (2.8.13) for the density matrix for the canonical ensemble,

$$
\begin{equation*}
\rho\left(\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right)=\frac{\mathrm{e}^{-\mathcal{H}\left[\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right] / k_{B} T}}{\int d^{3} q_{j} d^{3} p_{j} \mathrm{e}^{-\mathcal{H}\left[\left\{\mathbf{q}_{j}, \mathbf{p}_{j}\right\}\right] / k_{B} T}} \tag{2.11.20}
\end{equation*}
$$

with the normalization that $\int d^{3} q_{j} d^{3} p_{j} \rho\left(\left\{\mathbf{q}_{j}, \mathbf{p}_{j}\right\}\right)=1$. In our present notation, $\mathbf{q}_{i}$ gives the three spatial coordinates of particle $i$, and $\mathbf{p}_{i}$ are the corresponding momenta. The density matrix $\rho\left(\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right)$ is the probability density, per unit volume of phase space, that the system will be found in the state at $\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}$.

If we want the probability density $\mathcal{P}\left(\mathbf{p}_{k}\right)$ that one particular particle $k$ will have momentum $\mathbf{p}_{k}$, we should integrate the probability density $\rho\left(\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right)$ over all degrees of freedom except for $\mathbf{p}_{k}$.

$$
\begin{equation*}
\mathcal{P}\left(\mathbf{p}_{k}\right)=\frac{\prod_{i}^{\prime} \int d^{3} q_{i} \int d^{3} p_{i} \mathrm{e}^{-\beta \mathcal{H}\left[\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right]}}{\prod_{j} \int d^{3} q_{j} \int d^{3} p_{j} \mathrm{e}^{-\beta \mathcal{H}\left[\left\{\mathbf{q}_{j}, \mathbf{p}_{j}\right\}\right]}} \tag{2.11.21}
\end{equation*}
$$

where $\prod_{i}^{\prime}$ is a product over all degrees of freedom except $\mathbf{p}_{k}$.
For a general Hamiltonian, with interactions between the degrees of freedom, the above integrations can be difficult to do. But for non-interacting particles, where the degrees of freedom of one particle are uncoupled from those of the other particles, these integrals are easy!

When

$$
\begin{equation*}
\mathcal{H}\left[\left\{\mathbf{q}_{i} \mathbf{p}_{i}\right\}\right]=\sum_{i} \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right) \tag{2.11.22}
\end{equation*}
$$

then one has,

$$
\begin{equation*}
\mathrm{e}^{-\beta \mathcal{H}\left[\left\{\mathbf{q}_{i}, \mathbf{p}_{i}\right\}\right]}=\mathrm{e}^{-\beta \sum_{i} \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)}=\prod_{i} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{i} \mathbf{p}_{i}\right)} \tag{2.11.23}
\end{equation*}
$$

and the probability distribution $\mathcal{P}\left(\mathbf{p}_{k}\right)$ becomes

$$
\begin{align*}
\mathcal{P}\left(\mathbf{p}_{k}\right) & =\frac{\int d^{3} q_{k} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{k} \mathbf{p}_{k}\right)} \prod_{i \neq k} \int d^{3} q_{i} d^{3} p_{i} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)}}{\prod_{i} \int d^{3} q_{i} d^{3} p_{i} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{i}, \mathbf{p}_{i}\right)}}  \tag{2.11.24}\\
& =\frac{\int d^{3} q_{k} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{k} \mathbf{p}_{k}\right)}}{\int d^{3} q_{k} \int d^{3} p_{k} \mathrm{e}^{-\beta \mathcal{H}^{(1)}\left(\mathbf{q}_{k} \mathbf{p}_{k}\right)}} \tag{2.11.25}
\end{align*}
$$

where all the terms for particles $i \neq k$ in the numerator are exactly cancelled out by the corresponding terms in the denominator.

For the ideal gas, $\mathcal{H}^{(1)}(\mathbf{q}, \mathbf{p})=p^{2} / 2 m$ is independent of $\mathbf{q}$. Hence the integrals on $\mathbf{q}_{k}$ in the numerator and the denominator of the above each give a factor of the volume $V$, and then cancel. We are left with,

$$
\begin{equation*}
\mathcal{P}\left(\mathbf{p}_{k}\right)=\frac{\mathrm{e}^{-\beta p_{k}^{2} / 2 m}}{\int d^{3} p_{k} \mathrm{e}^{-\beta p_{k}^{2} / 2 m}}=\frac{\mathrm{e}^{-p_{k}^{2} / 2 m k_{B} T}}{\left(2 \pi m k_{B} T\right)^{3 / 2}} \tag{2.11.26}
\end{equation*}
$$

Setting $\mathbf{p}_{k}=m \mathbf{v}_{k}$, with $\mathbf{v}_{k}$ the velocity of particle $k$, and using $\mathcal{P}(\mathbf{v}) d^{3} v=\mathcal{P}(\mathbf{p}) d^{3} p \quad \Rightarrow \quad \mathcal{P}(\mathbf{v})=m^{3} \mathcal{P}(\mathbf{p})$, we then get for the distribution of the velocity $\mathbf{v}$ of particle $k$,

$$
\begin{equation*}
\mathcal{P}(\mathbf{v})=\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} \mathrm{e}^{-m v^{2} / 2 k_{B} T} \tag{2.11.27}
\end{equation*}
$$

which is just the Maxwell velocity distribution we found from kinetic theory in Notes 2-1.

An important reminder!

1) In the Maxwell probability distribution we have $\mathcal{P}(\mathbf{v}) \propto \mathrm{e}^{-\beta m v^{2} / 2 m}=\mathrm{e}^{-\beta \epsilon_{\mathrm{kin}}}$

Here $\mathcal{P}(\mathbf{v})$ is the probability density for a property of a single particle, and the Boltzmann factor that appears involves the energy of that single particle, in this case its kinetic energy $\epsilon_{\text {kin }}=p^{2} / 2 m$. This result holds rigorously only in the limit of non-interacting particles.
2) In the canonical ensemble we have that the probability for the system to be in a particular state $i$ with total energy $E_{i}$ is $\mathcal{P}_{i} \propto \mathrm{e}^{-\beta E_{i}}$.

Here $\mathcal{P}_{i}$ is the probability for the entire system to be found in state $i$ (for a classical system of particles, state $i$ would correspond to some position $\left\{q_{i}, p_{i}\right\}$ in $6 N$-dimensional phase space), and the Boltzmann factor that appears involves the total energy $E_{i}$ of the entire system, and $i$ specifies the canonical coordinates of all particles (not just a particular particle). This result holds generally for any type of system, no matter what are the interactions among the degrees of freedom.

