Unit 2-12: The Virial Theorem and the Equipartition Theorem for Classical Systems
Here we derive two well known theorems that apply to classical systems of particles only.

The Virial Theorem

Consider,
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where z; and z; are any of the 6N canonical coordinates, g;,p;, i =1,...,3N, and /qudpk means the integral over

all the 6N coordinates. There is no restriction on the Hamiltonian #, i.e. particles may have arbitrary interactions.

We can write for the numerator,

M| e L 0 -pn
/qudpk {xz 8%} e =73 dqrdpy ; oz (e ) (2.12.2)

We can now integrate by parts with respect to x;,
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where [ dgidpy in the first term (the boundary term) denotes the integral over all coordinates except z;. The limits

xg-l) and xf)

are the extremal allowed values for x;.

Now the boundary term from the integration by parts always vanishes because H becomes infinite at the extremal
values of any coordinate, and so e " — 0. We see this as follows:

1) If z; is a momentum p, then the extremal values are p = too and since H must include the kinetic energy term
p?/2m, then H — co.

2) If z; is a spatial coordinate g, then the extremal values are at the boundary of the box containing the system. We
can model the box by a potential energy V(r) that is zero inside the box, but infinite outside the box, so that the
particles may never be outside the box. Since H must include this potential energy, and V' — oo at the boundaries,
then H — oo at the boundary.

Sometimes, in theoretical work, we use periodic boundary conditions rather than rigid boundaries as in a physical
box. Periodic boundary conditions require that, if L is the length of the box in direction X, then the Hamiltonian
must be periodic in z and so obey H[z; + L] = H[x;], for any spatial coordinate x; of particle 4, and similarly for
the orthogonal directions. A particle that exits the system at the boundary on the right, re-enters the system at the
corresponding point at the boundary on the left. In this case the boundary term in Eq. (2.12.3) vanishes, not because

H — oo at the boundaries, but because by the periodic boundary conditions H[xgl)] = H[m§2)].

So we now have,
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But (8;;) = 0,5, so finally,
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Now the integrals in the numerator and the denominator cancel, and we get,
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If x; = x; = p;, then using Hamilton’s equation of motion, % = ¢;, we get,
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If x; = x; = ¢;, then using Hamilton’s equation of motion, 90 = —ps, we get,
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These yield,
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The latter is the Virial Theorem of Claussius (1870).
The Equipartition Theorem

Suppose the Hamiltonian is quadratic in some particular degree of freedom x;. This can be either a spatial coordinate
or a momentum. We then have,
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where H'[g;, p;] can depend on all the degrees of freedom except x;. It then follows that,
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SO @ <x]2> is the contribution to the total average energy from the degree of freedom x;.

We now calculate (z7).
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where / dg;dp; denotes the integral over all degrees of freedom except x;.

The first terms in both the numerator and the denominator are equal and so cancel. We are left with,
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So the contribution to (#) from the degree of freedom z; is,
1kgT 1
aj{a}) = a5 j = 5ksT (2.12.15)
J

Each quadratic degree of freedom in the Hamiltonian contributes %k g1 to the average total energy, no matter what
is the strength of its coupling constant «;. This is the Equipartition Theorem.

The contribution of each quadratic degree of freedom to the specific heat at constant volume Cy is then,
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Ideal Gas: For the ideal gas, H = ZZ 1 |2p| and so there are 3N quadratic degrees of freedom — the 3N momenta.

The spatial coordinates do not contribute to the average energy since H does not depend on the ¢;. Therefore we
have,
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and so the average energy per particle is,

E
{ein) = = ngT (2.12.18)

This is just what we found earlier in Notes 2-1 from the simple kinetic theory of the ideal gas.

The specific heat at constant volume Cy is just,
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