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Unit 2-12: The Virial Theorem and the Equipartition Theorem for Classical Systems

Here we derive two well known theorems that apply to classical systems of particles only.

The Virial Theorem

Consider,

〈
xi
∂H
∂xj

〉
=

∫
dqkdpk

[
xi
∂H
∂xj

]
ρ({qk, pk}) =

∫
dqkdpk

[
xi
∂H
∂xj

]
e−βH∫

dqkdpk e−βH
(2.12.1)

where xi and xj are any of the 6N canonical coordinates, qi, pi, i = 1, . . . , 3N , and

∫
dqkdpk means the integral over

all the 6N coordinates. There is no restriction on the Hamiltonian H, i.e. particles may have arbitrary interactions.

We can write for the numerator,

∫
dqkdpk

[
xi
∂H
∂xj

]
e−βH = − 1

β

∫
dqkdpk xi

∂

∂xj

(
e−βH

)
(2.12.2)

We can now integrate by parts with respect to xj ,

∫
dqkdpk

[
xi
∂H
∂xj

]
e−βH = − 1

β

[∫ ′
dqkdpk xie

−βH
]x(2)

j

x
(1)
j

+
1

β

∫
dqkdpk

(
∂xi
∂xj

)
e−βH (2.12.3)

where

∫ ′
dqkdpk in the first term (the boundary term) denotes the integral over all coordinates except xj . The limits

x
(1)
j and x

(2)
j are the extremal allowed values for xj .

Now the boundary term from the integration by parts always vanishes because H becomes infinite at the extremal
values of any coordinate, and so e−βH → 0. We see this as follows:

1) If xj is a momentum p, then the extremal values are p = ±∞ and since H must include the kinetic energy term
p2/2m, then H →∞.

2) If xj is a spatial coordinate q, then the extremal values are at the boundary of the box containing the system. We
can model the box by a potential energy V (r) that is zero inside the box, but infinite outside the box, so that the
particles may never be outside the box. Since H must include this potential energy, and V → ∞ at the boundaries,
then H →∞ at the boundary.

Sometimes, in theoretical work, we use periodic boundary conditions rather than rigid boundaries as in a physical
box. Periodic boundary conditions require that, if L is the length of the box in direction x̂, then the Hamiltonian
must be periodic in x and so obey H[xi + L] = H[xi], for any spatial coordinate xi of particle i, and similarly for
the orthogonal directions. A particle that exits the system at the boundary on the right, re-enters the system at the
corresponding point at the boundary on the left. In this case the boundary term in Eq. (2.12.3) vanishes, not because

H →∞ at the boundaries, but because by the periodic boundary conditions H[x
(1)
j ] = H[x

(2)
j ].

So we now have,

∫
dqkdpk

[
xi
∂H
∂xj

]
e−βH =

1

β

∫
dqkdpk

(
∂xi
∂xj

)
e−βH (2.12.4)
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But

(
∂xi
∂xj

)
= δij , so finally,

〈
xi
∂H
∂xj

〉
=

∫
dqkdpk

[
xi
∂H
∂xj

]
e−βH∫

dqkdpk e−βH
=

1

β

∫
dqkdpk

(
∂xi
∂xj

)
e−βH∫

dqkdpk e−βH
=

δij
1

β

∫
dqkdpk e−βH∫

dqkdpk e−βH
(2.12.5)

Now the integrals in the numerator and the denominator cancel, and we get,

〈
xi
∂H
∂xj

〉
= kBTδij The Virial Theorem (2.12.6)

If xi = xj = pi, then using Hamilton’s equation of motion,
∂H
∂pi

= q̇i, we get,〈
pi
∂H
∂pi

〉
= 〈piq̇i〉 = kBT (2.12.7)

If xi = xj = qi, then using Hamilton’s equation of motion,
∂H
∂qi

= −ṗi, we get,〈
qi
∂H
∂qi

〉
= −〈qiṗi〉 = kBT (2.12.8)

These yield,〈
3N∑
i=1

piq̇i

〉
= 3NkBT and −

〈
3N∑
i=1

qiṗi

〉
= 3NkBT (2.12.9)

The latter is the Virial Theorem of Claussius (1870).

The Equipartition Theorem

Suppose the Hamiltonian is quadratic in some particular degree of freedom xj . This can be either a spatial coordinate
or a momentum. We then have,

H[qi, pi] = H′[qi, pi] + αjx
2
j (2.12.10)

where H′[qi, pi] can depend on all the degrees of freedom except xj . It then follows that,

〈H〉 = 〈H′〉+ αj〈x2j 〉 (2.12.11)

so αj〈x2j 〉 is the contribution to the total average energy from the degree of freedom xj .

We now calculate 〈x2j 〉.

〈x2j 〉 =

∫
dqidpi x

2
j ρ({qi, pi}) =

∫
dqidpi x

2
j e−β(H

′+αjx
2
j )∫

dqidpi e−β(H
′+αjx

2
j )

(2.12.12)

=

(∫ ′
dqidpi e−βH

′
)(∫

dxj x
2
j e−βαjx

2
j

)
(∫ ′

dqidpi e−βH
′
)(∫

dxj e−βαjx
2
j

) (2.12.13)
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where

∫ ′
dqidpi denotes the integral over all degrees of freedom except xj .

The first terms in both the numerator and the denominator are equal and so cancel. We are left with,

〈x2j 〉 =

∫
dxj x

2
j e−βαjx

2
j∫

dxj e−βαjx
2
j

=

∫
dxj x

2
j e−βαjx

2
j√

2π/2βαj
=

1

2βαj
=

1

2

kBT

αj
(2.12.14)

[The above follows since
∫
dx e−x

2/2σ2

=
√

2πσ2, and (
√

2πσ2)−1
∫
dxx2 e−x

2/2σ2

= σ2.]

So the contribution to 〈H〉 from the degree of freedom xj is,

αj〈x2j 〉 = αj
1

2

kBT

αj
=

1

2
kBT (2.12.15)

Each quadratic degree of freedom in the Hamiltonian contributes 1
2kBT to the average total energy, no matter what

is the strength of its coupling constant αj . This is the Equipartition Theorem.

The contribution of each quadratic degree of freedom to the specific heat at constant volume CV is then,

αj

(
∂〈x2j 〉
∂T

)
V

=
1

2
kB (2.12.16)

Ideal Gas: For the ideal gas, H =
∑N
i=1

|p|2

2m
, and so there are 3N quadratic degrees of freedom – the 3N momenta.

The spatial coordinates do not contribute to the average energy since H does not depend on the qi. Therefore we
have,

〈H〉 = E =
3

2
NkBT (2.12.17)

and so the average energy per particle is,

〈εkin〉 =
E

N
=

3

2
kBT (2.12.18)

This is just what we found earlier in Notes 2-1 from the simple kinetic theory of the ideal gas.

The specific heat at constant volume CV is just,(
∂〈E〉
∂T

)
V,N

=
3

2
NkB (2.12.19)


