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Unit 2-15: Entropy and Information

In this section we discuss the relation between entropy and information.

In the canonical ensemble we found that, for a system with a continuous energy spectrum, the probability density for
the system to be in a state with energy E is,

P(E) =
Ω(E)e−E/kBT

∆EQN
(2.15.1)

If we imagine discretizing the microstates so that they are labeled by an index i (if we are thinking of a gas of classical
particles, we do this by dividing the continuous phase space into discrete cells of volume h3N ), then we have from
Eq. (2.8.16) that the probability for the system to be in a particular state i is,

Pi =
e−Ei/kBT

QN
with QN =

∑
i

e−Ei/kBT (2.15.2)

Consider the average value of lnPi,

〈lnPi〉 =
∑
i

Pi lnPi by the definition of averaging over a probability distribution. (2.15.3)

but also,

〈lnPi〉 =

〈
ln

[
e−Ei/kBT

QN

]〉
= − 〈E〉

kBT
− lnQN = − 〈E〉

kBT
+

A

kBT
(2.15.4)

where in the last step we used A = −kBT lnQN . Now since A = E − TS, we then have,

〈lnPi〉 = −〈S〉
kB

where 〈S〉 is the entropy computed in the canonical ensemble. (2.15.5)

We thus conclude,

〈S〉 = −kB
∑
i

Pi lnPi where Pi is the probability to be in state i. (2.15.6)

The above result was derived for the canonical ensemble. However it also holds for microcanonical ensemble, as follows.

In the microcanonical ensemble, the probability to be in state i is just 1/Ω(E) for a state with E = Ei, and zero
otherwise. This is because all states with energy E are assumed to be equally likely. Therefore we have,

−kB
∑
i

Pi lnPi = −kB
∑
i

s.t. E = Ei

(
1

Ω

)
ln

(
1

Ω

)
where the sum is over all states i such that Ei = E. (2.15.7)

But the terms in the sum are all equal, and the number of terms is just the number of states at energy E, which is
Ω. Hence we have,

−kB
∑
i

Pi lnPi = −kB Ω

(
1

Ω

)
ln

(
1

Ω

)
= kB ln Ω = S (2.15.8)

where S is the entropy in the microcanonical ensemble.

Thus

S = −kB
∑
i

Pi lnPi works for both the microcanonical and canonical ensembles! (2.15.9)
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Shannon (1948) turned this relation backwards in developing a close relation between entropy and information theory.

Consider a system with N states labeled by a discrete index i, and Pi is the probability for the system to be in state
i. We want to define a measure of how disordered the distribution Pi is. We will call this measure S (it will turn out
to be the entropy!). The bigger (smaller) S is, the more (less) disordered the system in, the less (more) information
we have about the probable state of the system.

We want S to satisfy the following properties:

1) If Pj = 1 when j = i, and Pj = 0 when j 6= i, then the system is known exactly to be in state i. This should have
S = 0 as there is no uncertainty in our knowledge of the state of the system; there is no disorder.

2) For equally likely states, i.e. Pi = 1/N for all N states, then we have no knowledge about the state of the system
– all states are equally likely. The system is maximally disordered and so S should have its maximum possible value.

3) S should be additive over independently random systems.

To explain what we mean by (3), suppose we have one system with N equally likely states labeled by n = 1, . . . , N ,
and a second system with M equally likely states labeled by m = 1, . . . ,M .

The combined system has N ×M equally likely states labeled by the pair (n,m). We want,

S(N ×M) = S(N) + S(M) (2.15.10)

The function which has this property is the logarithm. We will use the natural logarithm, although any base would
do (Shannon used base 2 since he was concerned with binary data transmission).

We conclude that a system of N equally likely states should have,

S = k lnN where k is an arbitrary proportionality constant. (2.15.11)

(Note: if we take k = kB , then the above is the same as the definition of entropy in the microcanonical ensemble.)

Suppose that all states are not equally likely. What is the value of S for such a case?

Consider a system which has two possible states 1 and 2. The probability to be in state 1 is P1 and the probability
to be in state 2 is P2 = 1− P1. In general P1 6= P2, i.e. the states need not be equally likely.

What is the disorder measure of this two state system, S(P1,P2)?

Consider N copies of this two state system. By the additivity of S we want the disorder of this joint system of N
copies to be,

S = NS(P1,P2) (2.15.12)

Now in any given sample of the N copy system, some number n1 of the systems will be in state 1, while the remaining
n2 = N − n1 will be in state 2. The probability for this outcome will be given by the binomial distribution,

P(n1) =
N !

n1!n2!
Pn1
1 P

n2
2 (2.15.13)

For large N , the probability distribution P(n1) is strongly peaked about the average value n1 = NP1.

To see this, we have,

average number of systems in state 1 is: 〈n1〉 = NP1 (2.15.14)

standard deviation of the number of systems in state 1 is:
√
〈n21〉 − 〈n1〉2 =

√
NP1P2 (2.15.15)

so the relative width of the distribution of n1 is:

√
〈n21〉 − 〈n1〉2
〈n1〉

=

√
NP1P2

NP1
∼ 1√

N
. (2.15.16)
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If you are not familiar with the results in Eqs. (2.15.14) and (2.15.15), these are derived in an appendix at the end of
this section.

Since the relative width of the distribution of n1 goes ∼ 1/
√
N → 0 as N gets large, we almost always will find the

system of N copies with NP1 in state 1 and NP2 in state 2. How many ways are there to choose which NP1 of the
N copies will be in state 1? There are,

N !

(NP1)!(NP2)!
(2.15.17)

ways, and each of these ways are equally likely!

So by Eq. (2.15.11) the entropy of the N copy system, in which there are N !/(NP1)!(NP2)! equally likely outcomes,
is,

S = k ln

[
N !

(NP1)!(NP2)!

]
= k

[
lnN !− ln(NP1)!− ln(NP2)!

]
(2.15.18)

Then using Stirling’s formula, lnN ! ≈ N lnN −N , we have,

S = k
[
N lnN −N −NP1 ln(NP1) +NP1 −NP2 ln(NP2) +NP2

]
(2.15.19)

= k
[
N lnN −N(P1 + P2) lnN −N +N(P1 + P2)−NP1 lnP1 −NP2 lnP2

]
(2.15.20)

= −kN
[
P1 lnP1 + P2 lnP2

]
(2.15.21)

where in the above we used ln(NP1) = lnN + lnP1 and P1 + P2 = 1.

Now by Eq. (2.15.12) we have S = NS(P1,P2). We thus conclude that the measure of disorder for a two state system
with arbitrary probability P1 and P2 = 1− P1, to be in the two states is,

S(P1,P2) = −k
[
P1 lnP1 + P2 lnP2

]
(2.15.22)

Similarly, if our system had m possible states, with probabilities P1,P2, . . . ,Pm, and we took N copies of this m level
system, the joint N -copy system would have on average NP1 of the copies in state 1, NP2 of the copies in state 2,
. . . , and NPm copies in state m, and as N → ∞ the probability distribution would be strongly peaked about these
average values. The number of equally likely ways to divide the N copies this way is,

N !

(NP1)!(NP2)! · · · (NPm)!
(2.15.23)

A similar line of argument then results in the disorder measure for the m level system being,

S(P1,P2, . . . ,Pm) = −k
[
P1 lnP1 + P2 lnP2 + · · ·+ Pm lnPm

]
(2.15.24)

Or,

S({Pi}) = −k
∑
i

Pi lnPi (2.15.25)

The above thus defines our measure of the disorder of the probability distribution Pi.

Note that it obeys the properties we wanted: for N equally likely states, then S = −k
∑
i(1/N) ln(1/N) =

−k ln(1/N) = k lnN ; and if Pi = 1 and all other Pj = 0, then we have S = −k(N − 1)(0) ln(0)− k(1) ln(1) = 0. This
follows since ln(1) = 0, and limε→0 ε ln ε = 0.
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We see that, if we take k = kB , then this S agrees with what we found in Eq. (2.15.9) for the entropy in both the
canonical and microcanonical ensembles.

But now we will take the above S({Pi}) and use it to derive the mircrocanonical and the canonical ensembles! We will
take S of Eq. (2.15.25), with k = kB , as our definition of entropy, and define equilibrium as the probability distribution
that maximizes S, subject to whatever constraints we know to exist on the distribution. Each such constraint
represents some “information” we have about the system. From this point of view, the equilibrium distribution is the
most disordered distribution a system can have, subject to the known information.

The Microcanonical Ensemble at Fixed Energy E

Here our system consists of a set of states i each of which has an energy Ei. We want Pi = 0 for Ei 6= E, and Pi 6= 0
for Ei = E.

Considering only those states i with Ei = E, we now want to maximize S over all possible values of these non-zero
Pi.

We want to maximize S = −kB
∑
i Pi lnPi subject to the constraint that

∑
i Pi = 1. To do this we use the method

of Lagrange multipliers.

The method of Lagrange multipliers says that we should maximize in an unconstrained way, with respect to the Pi,
the quantity

S + λkB
∑
i

Pi (2.15.26)

where λ is the Lagrange multiplier – we then determine the value of λ by imposing the constraint, in this case that∑
i Pi = 1.

So if there are N states of energy E, then the maximization of the above give,

0 =
∂

∂Pi

S + λkB
∑
j

Pj

 =
∂

∂Pi

−kB∑
j

[
Pj lnPj − λPj

] (2.15.27)

⇒ Pi
(

1

Pi

)
+ lnPi − λ = −0 ⇒ Pi = eλ−1 is the same for all states i (2.15.28)

So we have that the distribution that maximizes S is the one with equally likely states.

To find the value of λ we then use the constraint,∑
i

Pi = Neλ−1 = 1 ⇒ λ = 1 + ln(1/N) = 1− lnN (2.15.29)

so

Pi = eλ−1 = e− lnN =
1

N
as expected for equally likely states. (2.15.30)

So in the microcanonical ensemble at fixed energy E, maximizing the entropy S of Eq. (2.15.25) reproduces the
expected result that all states at energy E are equally likely.

The Canonical Ensemble at Fixed Average Energy 〈E〉

Now any energy Ei is allowed, but we have the constraint that the average energy 〈E〉 is fixed,

⇒
∑
i

PiEi = 〈E〉 (2.15.31)
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We still have the constraint that the distribution is normalized,

⇒
∑
i

Pi = 1 (2.15.32)

So the maximization requires two Lagrange multipliers, λ and β. We want to maximize,

S + λkB
∑
i

Pi − βkB
∑
i

PiEi (2.15.33)

The maximization condition is then,

0 =
∂

∂Pi

−kB∑
j

[
Pj lnPj − λPj + βPjEj

] ⇒ 0 = 1 + lnPi − λ+ βEi (2.15.34)

So

Pi = eλ−1e−βEi (2.15.35)

Normalization requires,∑
i

Pi = eλ−1
∑
i

e−βEi = 1 ⇒ eλ−1 =
1∑

i

e−βEi

(2.15.36)

So the probability distribution is,

Pi =
e−βE∑
j

e−βEj

(2.15.37)

If we interpret β = 1/kBT , the we recover the canonical distribution!

The parameter β is determined by the constraint on the average energy,

〈E〉 =

∑
i

e−βEEi∑
i

e−βEi

(2.15.38)

More General Ensembles

More generally, if we had some other information, say the quantity X was constrained to have a known average
value 〈X〉 =

∑
i PiXi, then we would find that maximization of the entropy subject to this constraint would give the

distribution,

Pi =
e−γXi∑
j

e−γXj

(2.15.39)

with the Lagrange multiplier γ determined by requiring,

〈X〉 =

∑
i

e−γXiXi∑
j

e−γXj

(2.15.40)
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We can use the definition S = −kB
∑
i

Pi lnPi more generally than just for systems in equilibrium in the thermody-

namic limit. It can be used just as well for systems of finite size, and for systems out of equilibrium.

Appendix

Suppose we have an experiment where there are only two outcomes, such as the flipping of a coin. We will say n = 1
if the coin turns up heads, and n = 0 if the coin tuns up tails. The probability to get a head is p and the probability
to get a tail is q = 1− p. What is the average value of n for one flip?

〈n〉 = p(1) + q(0) = p (2.15.41)

What is the variance of n for one flip?

〈n2〉 = p(12) + q(02) = p so Var[n] = 〈n2〉 − 〈n〉2 = p− p2 = p(1− p) = pq (2.15.42)

Now suppose we flip the coin N times, and ni is the outcome of the ith flip. Then the total number of heads in N
flips is,

n = n1 + n2 + · · ·+ nN (2.15.43)

so the average number of heads in N flips is,

〈n〉 = 〈n1〉+ 〈n2〉+ · · ·+ 〈nN 〉 = N〈ni〉 = Np (2.15.44)

because all the ni are independent identical random variables, i.e. 〈ni〉 = p for all i.

What is the variance of the number of heads in N flips? We have,

〈n2〉 = 〈(n1 + n2 + · · ·+ nN )2〉 =

〈(
N∑
i=1

ni

)2〉
=

〈(
N∑
i=1

ni

) N∑
j=1

nj

〉 =

N∑
i,j=1

〈ninj〉 (2.15.45)

Now when i = j, then 〈ninj〉 = 〈n2i 〉 = p. In the sum, there are N such terms where i = j. When i 6= j, then
〈ninj〉 = 〈ni〉〈nj〉 = (p)(p) = p2, since ni and nj are independent variables when i 6= j. In the sum, there are
N2 −N = N(N − 1) such terms where i 6= j. So we then have,

〈n2〉 = Np+N(N − 1)p2 (2.15.46)

and so

Var[n] = 〈n2〉 − 〈n〉2 = Np+N(N − 1)p2 − (Np)2 = Np−Np2 = Np(1− p) = Npq (2.15.47)

so the standard deviation of the number of heads in N flips is√
〈n2〉 − 〈n〉2 =

√
Npq (2.15.48)


