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Unit 3-5: Average Occupation Numbers and Comparison of Quantum and Classical Ideal Gases

Average Occupation Numbers

To recap from the previous section, for identical non-interacting particles, we have for the quantum grand canonical
partition function,

lnL = ±
∑
i

ln
(
1± ze−βεi

)
= ±

∑
i

ln
(

1± e−β(εi−µ)
)

where + is for FD and − is for BE (3.5.1)

[Note: in some of our earlier formulas, it was + for BE and − for FD; in the above equation it is the other way
around. So always be careful you know which is which!]

and for classical particles we had,

lnL = zQ1 = z
∑
i

e−βεi =
∑
i

e−β(εi−µ) (3.5.2)

Note, the classical result of Eq. (3.5.2) is just equal to the quantum result of Eq. (3.5.1) in the limit z → 0. This is
because ln(1 + δ) ≈ δ for small δ.

Quantum Average Occupation Numbers

Now, we had from Eqs. (3.1.28) and (3.1.30) of Notes 3-1, that,

〈E〉 = −
(
∂lnL
∂β

)
V,z

, 〈N〉 = z

(
∂lnL
∂z

)
T,V

(3.5.3)

Applying to the quantum L we get,

〈N〉 = ±z
∑
i

±e−βεi

1± ze−βεi
=
∑
i

ze−βεi

1± ze−βεi
(3.5.4)

〈N〉 =
∑
i

(
1

z−1eβεi ± 1

)
=
∑
i

(
1

eβ(ε−µ) ± 1

)
+ for FD, − for BE (3.5.5)

and,

〈E〉 = ∓
∑
i

∓zεie−βεi
1± ze−βεi

=
∑
i

zεie
−βεi

1± ze−βεi
(3.5.6)

〈E〉 =
∑
i

(
εi

z−1eβεi ± 1

)
=
∑
i

(
εi

eβ(εi−µ) ± 1

)
+ for FD, − for BE (3.5.7)

Now, since,

N =
∑
i

ni, we also have 〈N〉 =
∑
i

〈ni〉 (3.5.8)

and since

E =
∑
i

εini, we also have 〈E〉 =
∑
i

εi〈ni〉. (3.5.9)
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Comparing with Eqs. (3.5.5) and (3.5.7) we conclude,

〈ni〉 =
1

eβ(εi−µ) ± 1
+ for FD, − for BE (3.5.10)

Classical Average Occupation Numbers

Using the classical L of Eq. (3.5.2) we have,

〈N〉 = z
∂

∂z

(∑
i

ze−βεi

)
= z

∑
i

e−βεi = zQ1 (3.5.11)

and

〈E〉 = − ∂

∂β

(∑
i

ze−βεi

)
=
∑
i

εize
−βεi (3.5.12)

which leads to the conclusion,

〈ni〉 = ze−βεi = e−β(εi−µ) for classical particles (3.5.13)

We plot these different 〈n〉 below.

0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10

<n
>

x = (ε−µ)/kBT

FD
BE

classical

With x ≡ (ε− µ)/kBT , we see that:

(1) For BE, 〈n〉 diverges as x→ 0, i.e. when µ→ ε.

(2) For FD, 〈n〉 →
{

1 for x� 0, i.e. ε� µ
0 for x� 0, i.e. ε� µ

.

(3) All expressions behave as 〈n〉 ∼ e−x at large x.

(4) For FD, 〈n〉 goes from 1 to 0 over an interval of ∆x ∼ O(1), i.e.
|ε− µ| ∼ kBT .

Comparison of the Classical and Quantum Ideal Gas

Classical phase space approach

We had,

L =

∞∑
N=0

zN QN =

∞∑
N=0

[zQ1]N

N !
= ezQ1 ⇒ lnL = zQ1 (3.5.14)

where Q1 is the single particle partition function for a free point particle,

Q1 =
1

h3

∫
d3r

∫
d3p e−βp

2/2m =
V

h3
(2πmkBT )3/2 =

V

λ3
with λ =

(
h2

2πmkBT

)1/2

(3.5.15)
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λ is the thermal wavelength. In the classical calculation, h was an arbitrary phase space constant.

Quantum sum over quantized energy levels in the classical limit

We now compare the above classical calculation to what we get using the occupation number formulation, in which
one sums over the single particle energy levels εi. Since we want to compare to the classical limit, we will use the
expression of Eq. (3.5.2) which we get as the z � 1 limit of the quantum result of Eq. (3.5.1).

lnL = zQ1 = z
∑
i

e−βεi (3.5.16)

Now, however, instead of integrating over continuous phase space to compute Q1, we will sum over the quantized
energy levels of a quantum mechanical particle in a box of volume V = L3.

Taking periodic boundary conditions, the eigenstates of the particle in a box are given by φk(r) =
1√
V

eik·r, with

kα = (2π/L)nα, with nα integer and α = x, y, z, as discussed in Notes 3-3. The momentum of the state is p = ~k

and the energy is εk =
~2k2

2m
. We then have,

Q1 =
∑
k

e−βεk =
∑
k

e−β~
2k2/2m (3.5.17)

The spacing between the allowed values of kα is ∆k = 2π/L, so we can write,

Q1 =
1

(∆k)3

∑
k

(∆k)3e−β~
2k2/2m ≈ V

(2π)3

∫
d3k e−β~

2k2/2m (3.5.18)

The approximation of the sum by the integral becomes exact in the thermodynamic limit V →∞, where ∆k → 0.

We can now do the Gaussian integration over k to get,

Q1 =
V

(2π)3

(
2πm

β~2

)3/2

= V

(
mkBT

2π~2

)3/2

= V

(
2πmkBT

h2

)3/2

=
V

λ3
(3.5.19)

with,

λ =

(
h2

2πmkBT

)1/2

the thermal wavelength (3.5.20)

This is exactly the same result for Q1 as in the classical phase space calculation of Eq.(3.5.15), provided we take the
classically arbitrary phase space constant h to be Planck’s constant.

Thus if we want the quantum mechanical calculation to agree with the classical calculation, in the classical limit, the
phase space constant h must be taken to be Planck’s constant.

Validity of the classical limit

We saw that the log of the quantum partition functions lnL (for FD or BE) of Eq. (3.5.1) agree with the classical
result of Eq. (3.5.2) in the limit z � 1. We now will see what is the physical meaning of this condition.

Classically:

N = z

(
∂lnL
∂z

)
T,V

= z
∂

∂z
(zQ1) = zQ1 (3.5.21)

So,

z =
N

Q1
=
N

V
λ3 = nλ3 where n = N/V is the density of particles (3.5.22)
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Define n ≡ 1/`3, where ` is roughly the average spacing between the particles. Then,

z =

(
λ

`

)3

, and z � 1 ⇒ λ� ` (3.5.23)

With h as Planck’s constant, we saw in Notes 3-3 that the thermal wavelength λ is just the de Broglie wavelength of
a typical particle taken from a classical Maxwell velocity distribution at temperature T .

⇒ Quantum effects can be ignored, and classical results will give a good approximation whenever λ� `, i.e. when
the quantum de Broglie wavelength of a typical particle is much less than the average spacing between the particles.

Since λ ∼ 1/
√
T , as T decreases λ increases. For a gas of fixed density n = 1/`3, quantum effects therefore become

more important as T decreases. At a fixed T , quantum effects become more important as the density n increases (so
` decreases).

⇒ The classical limit is a high temperature, low density, limit.


