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Unit 4: Phase Transitions

Most of the models we have dealt with up to this point involved non-interacting particles, i.e. the ideal gas. This
is mostly because models with interactions become extremely difficult to treat analytically! However, interactions
between particles can be a crucial factor in determining the behavior of a system. In particular, they are important
for understanding phase transitions. A phase transition is when the macroscopic behavior of a system changes in some
singular way as a thermodynamic parameter is varied. The classical example is H2O, which can exist in the forms of
solid ice, flowing water, and vapor, each of which has quite different physical properties from the others. As one varies
temperature and/or pressure, we can transition from one of these states to another. Clearly it is the interactions
between the H2O molecules that is important for such transitions. If the H2O molecules were not interacting, then we
could just compute the single-particle partition function Q1, and then QN = QN1 /N ! would give all the properties of
the N -particle system, and everything would be continuous functions of T , V , and N – and so no phase transitions!

In this unit we will discuss phase transitions in the context of a class of simple models, that of interacting classical
spins. One can think of these as a model for magnetic phase transitions, where each spin represents a local magnetic
moment on an ion or atom. At high temperatures, most magnetic materials are paramagnetic (or diamagnetic) – the
average magnetization of the system is zero unless there is an external applied magnetic field. But as one lowers T in
some materials, there can be a ferromagnetic phase transition to a phase in which there can be a net magnetization
even when the external magnetic field is zero. But such classical spin models also have wide application to other
physical systems, such as the liquid-gas transition, ordering in binary alloys, and many others.

Unit 4-1: Classical Spin Models

We consider a set of classical (i.e. not quantum) spins si of unit magnitude, |si| = 1, that are located on the sites i
of a periodic d-dimensional lattice of sites. Each si interacts only with its nearest neighbors sj , i.e. those spins that
are physically closest to si. We can write the Hamiltonian for this system as,

H = −J
∑
〈ij〉

si · sj (4.1.1)

where 〈ij〉 denotes pairs of nearest neighbor spins. In the sketch to the right, the spin
on the red site interacts only with the spins on the blue sites. When the coupling
J > 0, the model is said to be ferromagnetic – nearest neighbor spins lower their
energy by aligning in the same direction. If we have J < 0, the model is said to be
antiferromagnetic – nearest neighbor spins lower their energy by aligning in opposite
directions. We will be discussing ferromagnetic models.

One finds that the qualitative behavior of such models depends on two key param-
eters: (i) the dimensionality d of the space in which the spins sit (d = 1 is a line,
d = 2 is a plane, d = 3 is a volume, etc.), and (ii) the number of components n that
the spin si has.

Some well studied cases, corresponding to different values of n, are as follows. In all cases, the model with a given n
can exist in any dimension of physical space, i.e. we can have any value for d.

Heisenberg Model (n = 3)

si is a spin pointing in any direction in three-dimensional space, so n = 3 and si = (sx, sy, sz).

XY Model (n = 2)

si is a spin pointing in any direction within a two-dimensional plane, so n = 2 and si = (sx, sy). The model gets its
name because, by convention, we take the plane in which the spins point to be the xy-plane.
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Ising Model (n = 1)

Here the spins are restricted to lie along only a single direction, and so they can only point parallel or antiparallel to
that direction. By convention one usually calls the direction in which spins can point the ẑ-direction. We have n = 1
and si = ±1.

Some more unusual cases are:

The Self-Avoiding Walk

Here we take the limit n→ 0. This model is often used to model polymers. What n→ 0 has to do with self avoiding
walks or polymers is a topic for another class!

The Spherical Model

Here we take the limit n → ∞. The spherical model is of interest because in many cases one can find an exact
analytical solution.

Here we will focus on the Ising model (invented by Wilheim Lenz in 1920 – Lenz gave it to his student Ernst Ising to
solve. So sometimes it is good to be the student!).

Ensembles

We can consider two different ensembles for our spin models. The first is the . . .

Fixed Magnetization Ensemble:

Here the total magnetization is M =

N∑
i=1

si and we work in an ensemble in which the value of M is fixed. The partition

function is then,

Z̃(T,M) =
∑
{si}

δ

(∑
i

si −M

)
e−βH[si] (4.1.2)

where the sum is over all possible configurations of spins {si}, and the delta function restricts non-zero contributions
to those configurations with a given value of M .

We can write M =
∑
i si = N+ − N−, where N+ is the number of spins that point up, and N− is the number

of spins that point down. The constant magnetization ensemble is thus similar to the canonical ensemble in the
occupation number representation, where one sums over all sets of occupation numbers {ni} but restricts the non-
zero contributions to those configurations in which

∑
i ni = N is fixed to a certain value. Thus M here is playing a

role similar to the number of particles N in the canonical ensemble.

In this ensemble, the free energy is called the Helmholtz free energy F , and one has,

F (T,M) = −kBT ln Z̃(T,M) Helmholtz free energy (4.1.3)

The second ensemble is the . . .

Fixed Magnetic Field Ensemble:

To remove the constraint of fixed M , we can Legendre transform from M to a conjugate variable h. We will see that
this h is just the external magnetic field. The free energy in this ensemble is called the Gibbs free energy G, and is
obtained as the usual Legendre transform,

G(T, h) = F (T,M)− hM Gibbs free energy (4.1.4)
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where(
∂F

∂M

)
T

= h ⇒
(
∂G

∂h

)
T

= −M (4.1.5)

With S = −
(
∂F

∂T

)
M

= −
(
∂G

∂T

)
h

the entropy, we have,

dF = −SdT + hdM and dG = −SdT −Mdh (4.1.6)

To get the partition function Z for G, we take the Laplace transform of Z̃,

Z(T, h) =
∑
M

eβhM Z̃(T,M) =
∑
M

eβhM
∑
{si}

δ

(∑
i

si −M

)
e−βH[si] (4.1.7)

If we switch the order of the sums around, we then get,

Z(T, h) =
∑
{si}

[∑
M

eβhMδ

(∑
i

si −M

)]
e−βH[si] =

∑
{si}

eβh
∑

i si e−βH[si] =
∑
{si}

e−β(H[si]−h
∑

i si) (4.1.8)

Here the sum is now an unconstrained sum over all possible spin configurations {si}, with any value of M , and the
term in the Boltzmann factor involving the conjugate variable h looks just like the interaction of the spins with a
magnetic field h. The constant h ensemble is thus similar to the grand canonical ensemble in the occupation number
representation, where one sums in an unconstrained way over all sets of occupation numbers {ni}, and h is playing a
role similar to the chemical potential.

One then has, for the Gibbs free energy,

G(T, h) = −kBT lnZ(T, h) (4.1.9)

and one can show that G computed this way will agree with the G computed from the Legendre transform of F , in
the thermodynamic limit where the number of spins N →∞. To check this we can compute,(

∂G

∂h

)
T

= −kBT
Z

(
∂Z

∂h

)
T

= −kBT
Z

∑
{si}

∂

∂h

(
e−β(H−h

∑
i si)

)
T

(4.1.10)

= −kBT
Z

∑
{si}

e−β(H−h
∑

i si)

(
β
∑
i

si

)
=

−
∑
{si}

e−β(H−h
∑

i si)

(∑
i

si

)
∑
{si}

e−β(H−h
∑

i si)
(4.1.11)

= −

〈∑
i

si

〉
= −M so

(
∂G

∂h

)
T

= −M as required (4.1.12)

We can work in the fixed magnetization or fixed magnetic field ensemble, according to our convenience. Usually it is
easiest to work with fixed magnetic field h. In this case we usually write,

H = −J
∑
〈ij〉

sisj − h
∑
i

si (4.1.13)

and include the magnetic field interaction within the definition of the Hamiltonian. With this definition of H, we
have for the partition function,

Z(T, h) =
∑
{si}

e−βH (4.1.14)
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Intensive Formulation

The above Helmholtz and Gibbs free energies are extensive quantities. It is useful to also define corresponding intensive
quantities. For a system with N total spins, we can define the magnetization density, i.e. the magnetization per spin,

m =
M

N
=

1

N

〈
N∑
i=1

si

〉
(4.1.15)

we then have,

Helmholtz free energy density:

In the limit N →∞, we have F (T,M) = Nf(T,m).

F

N
≡ f(T,m) depends on the magnetization density m (4.1.16)

df = −sdT + hdm where s =
S

N
is the entropy per spin (4.1.17)

(don’t confuse entropy per spin s with the spin si!)

Gibbs free energy density:

In the limit N →∞, we have G(T, h) = Ng(T, h).

G

N
≡ g(T, h) depends on the magnetization field h (4.1.18)

dg = −sdT −mdh (4.1.19)

We then have,(
∂f

∂m

)
T

= h and

(
∂g

∂h

)
T

= −m (4.1.20)


