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The Chemical Potential: Classical vs Quantum, Non-Relativistic vs Relativistic, Particle vs Oscillator

In everything below we are talking about a system of free (no-external potential energy), non-interacting, indistin-
guishable particles in a box of volume V .

Classical

particles

It is only in the classical limit that the ideal gas law, pV = NkBT , holds (and it holds no matter what is the internal
structure of the particles). In the classical limit it does not make sense to speak of fermions vs bosons, since there are
no quantum statistics. If we are talking about real particles, where it makes sense to say there are exactly N particles
in the box, then we can compute the entropy whether particles are non-relativistic, with ε = p2/2m, or relativistic,
with ε = pc. See notes 2-7 and notes from discussion session on Feb. 9. We have for indistinguishable particles,
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In both cases we have
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and we then get,

non-relativistic: µ = −kBT ln
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with the thermal wavelength λ =
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relativistic: µ = −kBT ln
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with the relativistic thermal wavelength defined by kBT =
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In both cases, if V is sufficiently large so that V/N > λ3, i.e. particles are separated from each other by more than
one thermal wavelength, which is just the condition that the system is in the classical limit, then µ < 0. So for the
classical ideal gas one cannot have µ = 0 or µ > 0, no matter whether the particles are non-relativistic or relativistic.

The above calculations were done in the microcanonical ensemble. We could do the same calculations in the canonical
ensemble and would get the same results. We could also do them in the grand canonical ensemble where N is not
fixed, but we will get the same result since the relative fluctuations in N ,

√
〈N2〉 − 〈N〉2/〈N〉 ∼ 1/

√
N vanish in the

thermodynamic limit.

It might be surprising that µ < 0, since one is used to thinking of µ as the change in energy when one adds a particle
to the system, and so one might expect that to be positive. But µ = (∂E/∂N)S,V is the energy change when the
entropy is kept constant, and most people don’t really have a good feeling for what it means to keep S constant. A
better way to think about it is in the canonical ensemble at fixed T , where µ is related to the change in free energy,
µ = (∂A/∂N)T,V , with A = E−TS. So even if E increases when we add a particle, so will TS increase. If the increase
in TS is greater than the increase in E, then A will decrease and µ < 0. This is the case for both the non-relativistic
and relativistic classical ideal gas.

oscillators

For a single harmonic oscillator of frequency ω0 in the classical limit, the equipartition theorem will hold and E = kBT .
For the classical oscillator, there are no “particles” and so no variable N to take derivatives with respect to. The
chemical potential is thus not defined.

One could argue from quantum mechanics that the oscillator is, on average, excited up to an energy level n such that
kBT ≈ n~ω0, and the classical limit is then kBT � ~ω0, and so n is very large. But recall from problem 1 on Problem
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Set 8 that the relative fluctuation in the excitation level is
√
〈n2〉 − 〈n〉2/〈n〉 = e~ω0/2kBT ≈ 1 is large in the classical

limit ~ω0/kBT � 1. The fluctuation in n is the same order of magnitude as 〈n〉 itself. Unlike for classical particles
in the grand canonical ensemble, there is no thermodynamic limit in which we can make the relative fluctuations in
n negligible. Thus we cannot think of this as being a system in which n is a controllable parameter that can be fixed
to a particular value, and hence a chemical potential for the oscillator level is not really defined.

Quantum non-degenerate limit

particles

This is the limit where quantum effects are noticeable but small. It makes sense to speak of the difference between
fermions and bosons, and each case gives a small correction to the ideal gas law as in the notes Eq. (3.8.31). We
would therefore expect small corrections to the entropy and to the free energy, hence small corrections to the chemical
potential, but still we expect µ < 0 for both fermions and bosons. Recall the non-degenerate limit is the z � 1 limit.
Since z = eµ/kBT , small z � 1 necessarily means µ < 0.

oscillators

Nothing new!

Quantum degenerate limit

Here quantum effects dominate, and we are not anywhere close to classical behavior. The ideal gas law pV = NkBT
does not hold, even approximately. So the expressions given above for the entropy S in the classical limit are not
valid.

fermionic particles

The degenerate gas of fermions is dealt with in Notes 3-9.

At T = 0 the N -particle ground state is constructed by filling up single particle energy levels consistent with the
Pauli exclusion principle. We add a particle first to the lowest energy level, then to the next lowest, then to the next
lowest, until we use up all the N particles. The energy of the last particle added is the Fermi energy εF . All single
particle states with ε < εF are filled, and all single particle states with ε > εF are empty. At T = 0, the Fermi
energy is the same as the chemical potential, µ(T = 0) = εF . For free particles, the single particle energy levels are
all εi > 0, and so εF > 0, and so the chemical potential is now positive, µ > 0. To be in the degenerate limit, one
have εF � kBT , or TF � T . In this case, finite T is a small correction to the T = 0 limit, and we continue to expect
that µ(T ) > 0. For none of these conclusions does it matter if the particles are non-relativistic with εk = ~2k2/2m,
or relativistic with εk = ~kc. The only difference between non-relativistic and relativistic particles will be a different
density of states g(ε), and all the things that follow from that. So, for example, εF is different for non-relativistic and
relativistic particles, but in both cases εF � kBT > 0, and so µ > 0.

bosonic particles

The degenerate gas of bosons is dealt with in Notes 3-11.

The boson occupation function is,

〈n(ε)〉 =
1

eβ(ε−µ) − 1
(5)

For free particles, the lowest energy single particle state has ε = 0, and so 〈n(0)〉 = 1/(e−βµ − 1). We therefore must
have µ < 0 or else we would have 〈n(0)〉 < 0, which is unphysical. It does not matter if the bosons are non-relativistic
or relativistic. The value of µ is determined so that N/V =

∫∞
0
dε g(ε)〈n(ε)〉.

For certain dispersion relations, i.e. how εk varies with |k|, in systems with a certain number of dimensions d (see
problem 1 on Problem Set 11), one finds that below a certain temperature Tc, the above integral has a maximal value
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as µ→ 0. For a particle density larger than that maximal value, one can never get the desired N/V , no matter what
one choses for µ. This leads to what is known as Bose-Einstein condensation. To get the desired density N/V , we
take µ = 0 and put all the missing particles in the ground state with ε = 0. So for T > Tc one has µ < 0, but for
T ≤ Tc one has µ = 0 and a finite fraction of the particles are in the ground state; when µ = 0, the number of particles
in the ground state is 1/(1− 1), which is indeterminate – one gets the number needed by a careful choice of how one
takes the limits V →∞ and µ→ 0. The number of particles excited out of the ground state is controlled just by the
temperature T (because µ = 0). The particles in excited states are called the “normal fluid”, while the particles in
the ground state are called the “condensate” or the “superfluid.” For T ≤ Tc, the particles in the normal fluid behave
like quantum excitations of a harmonic oscillator (see more below): they have µ = 0, the average number is controlled
solely by the temperature T , and the number of particles is not conserved – one can always “create” a normal particle
by exciting an additional particle out of the condensate, and one can always “destroy” a normal particle by adding it
into the condensate. For T ≤ Tc the pressure in the system goes as p ∝ T 5/2; it is independent of the particle density
N/V and is nothing like the ideal gas law. For T ≤ Tc, the entropy S is independent of the number of particles N
(see Eq. (3.11.50) for non-relativistic particles), consistent with µ = 0.

oscillators

Treating harmonic oscillators quantum mechanically, the energy levels are εn = ~ω0(n + 1/2). One finds that the
average 〈n〉 to which the oscillator is excited is exactly the same as the boson occupation function for a boson single
particle energy level ε = ~ω0, except with µ = 0,

〈n〉 =
1

eβ~ω0 − 1
(6)

and the probability to be excited to level n is similarly the same as the probability to have n bosons, but with µ = 0,

p(n) =
e−β~ω0n

∞∑
m=0

e−β~ω0m

= e−β~ω0n
[
1− e−β~ω0

]
(7)

We therefore regard an harmonic oscillator excited to level n as if it had n quanta, or bosonic “particles”, each with
energy ~ω0, and that the chemical potential µ = 0 for such particles. That µ = 0 implies that such bosons do not
obey number conservation; we can create a boson by exciting the oscillator to the next level, and we can destroy a
boson by having the oscillator go to the next lower level.

For systems in which oscillations are extended through space, such as electromagnetic field oscillations, or sound
modes in a solid, the oscillation mode is (for a spatially uniform system) usually characterized by a wavevector k,
and the mode has a frequency given by a dispersion relation ω(k). We thus say that a quantum of excitation of
such oscillation acts like a boson with energy ~ω(k) and momentum ~k, and that exciting the oscillator to level n
is like having n such bosons. In interactions of the oscillator with other degrees of freedom (such as particles), one
usually has it that energy and momentum must be conserved, so it is really quite accurate to think of these quanta
of oscillation as if they are bosonic particles, only with µ = 0.

It does not matter to this picture just what the dispersion relation ω(k) is. For many wave phenomena, such as
electromagnetic waves in the vacuum, or sound waves in a solid, at small |k| one usually has a linear dispersion
relation, ω = ck. But in other situations, such as the longitudinal plasma oscillation in a metal, or for optical phonons
in a solid, this need not be the case, and one has lim|k|→0 ω(k) = ω0, a constant. It might even be that the dispersion
relation could be quadratic, ω ∝ k2. None of that is relevant for the analogy between the excitation level n of the
oscillator and the description of that as n bosonic particles with µ = 0.


