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Unit 1-10-S2: Adiabatic, Reversible, Quaistatic, etc., and Some Examples

In our weekly Discussion Session a student asked if “reversible” is the same as “adiabatic”. This question brings up
a number of points that I have until now swept under the rug.

When using the energy E(S, V,N) as the fundamental thermodynamic potential, we had,

dE = TdS − pdV + µdN (1.10.S2.1)

Formally, this means that if one varied the entropy by dS, and/or the volume by dV , and/or the number of particles
by dN , then the resulting equilibrium state with S + dS, V + dV , and N + dN would have a thermodynamic energy
E + dE , with dE as given above. In the discussion below, let us imagine N is always kept fixed, so that the above
simplifies to,

dE = TdS − pdV or equivalently dS =
1

T
dE +

p

T
dV (1.10.S2.2)

Recognizing pdV as the mechanical work done by the system when its volume changes by dV , we then interpreted
TdS as the heat added to the system, so that the above becomes a conservation of energy,

dE = d-Q−d-W, (change in energy of system) = (heat inputed to system) − (work done by system) (1.10.S2.3)

We write pdV = d-W , and not dW , because pdV cannot in general be written as the total differential of some quantity
d(·). Alternatively, the value of d-W can depend on the path the system takes in going from (S, V ) to (S+dS, V +dV ).
Similarly with TdS = d-Q.

If we now try to interpret the above in the context of some physical process taking the system from one equilibrium
state to another, then some complications arise.

Let us first imagine that the process that takes the system from equilibrium state (1) to equilibrium state (2) proceeds
quasistatically. That means that the thermodynamic parameters are changing so slowly, that one can always assume
that the system is instantaneously in equilibrium as it moves between states (1) and (2). It is in this case that we
can interpret the heat absorbed by the system in this process as,

d-Q = TdS, or ∆Q =

∫ (2)

(1)

T (S, V (S)) dS (1.10.S2.4)

And similarly the work done by the gas is,

d-W = pdV, or ∆W =

∫ (2)

(1)

p(S(V ), V )dV (1.10.S2.5)

In doing these integrals, we see that the integrands T (S, V ) and p(S, V ) depend on the pathway V (S) (or equivalently
S(V )) that one takes in going from (1) to (2). Such quasistatic processes are also said to be reversible. If in going
from (1) to (2) the system has absorbed heat ∆Q and done work ∆W , then we can take the system from (2) back to
(1) by having the system release heat ∆Q and absorb work ∆W . Such reversible processes are what we had in mind
when discussed thermodynamic engines and the Carnot cycle or the Otto cycle. Any gas in a cylinder with a piston,
where we control the position of the piston and move it only slowly, gives an example of a reversible process.

Formally, a process is said to be adiabatic if the system has neither absorbed nor released any heat ∆Q. For a
reversible process, d-Q = TdS and so ∆Q = 0 ⇒ ∆S = 0. A reversible, adiabatic, process is thus also isentropic –
the entropy stays constant and ∆S = 0.

However, not all processes that take a system between two equilibrium states (1) and (2) are quasistatic! And so
not all such processes are reversible. The canonical example is when a constraint in a system is suddenly removed.
For example, consider a gas in a box that is thermally isolated from its surroundings. In the box is a thermally
insulating, immoveable, impermeable wall that separates the gas in the box into two regions. Each region is in
thermal equilibrium with itself, but the two regions are not in thermal equilibrium with each other. Then one



2

suddenly removes the wall and allows the gas in the two regions to mix. One can determine the new equilibrium
state in the box from thermodynamic considerations. It will be the state that maximizes the entropy subject to the
constraint that the total energy of the gas stays constant (and the total volume and the total number of particles
similarly stays constant). However, as the gas goes from the initial state where the gases on the two sides of the
wall are in equilibrium individually but not with each other, to the the final state where the two gases are mixed
and in equilibrium with each other, the series of states that the gas passes through in this process of mixing are not
equilibrium states. Hence one cannot do the integrals of Eqs. (1.10.S2.4) and (1.10.S2.5) since the thermodynamic
quantities T (S, V ) and p(S, V ) are not even defined for these intermediary non-equilibrium states. And once the two
gases have mixed and reached equilibrium, there is in general no thermodynamic process one can do that will take
the system back to its initial state. The sudden process of removing the wall is therefore an irreversible process.

In an irreversible process one can still measure the work done ∆W by the gas on its surroundings since this can be
defined in a purely mechanical way. And one can compute the energy difference between the initial and final states
∆E. And then one defines the heat absorbed by the system ∆Q by,

∆E = ∆Q−∆W (1.10.S2.6)

However, now one cannot relate ∆Q to the integral of Eq. (1.10.S2.4) because that integral is not defined and
d-Q 6= TdS. This is because in each step of the process, as the system absorbs heat d-Q, it is not passing from one
equilibrium state to another; only the initial and the final states are equilibrium states. In general one has d-Q ≤ TdS.
This is because we know that when a constraint is lifted, the entropy will in general increase, so dS > 0, even if no
heat is added to the system.

Similarly, in an irreversible process one in general has d-W ≥ pdV . This is because when the process is not quasistatic,
there are finite velocities involved, and so the work the system does is not just due to the pressure of the gas acting on
the walls of the container as the volume changes, but the gas also will do work against dissipative forces that might
be involved, such as frictional forces in the bearings on which the wall slides, or the viscosity of the gas itself.

Because of this, in an irreversible process, adiabatic ∆Q = 0 does not necessarily mean that ∆S = 0. In fact,
it generally doesn’t. Consider the above example of a box, thermally insulated from its surroundings, in which we
suddenly remove the internal wall and let the gases on the two sides mix and come into equilibrium. This is a adiabatic
process with ∆Q = 0 since the external walls of the box are thermally insulating – no heat goes into or out of the
box. However we generally will have ∆S > 0; maximizing S is what determines the new equilibrium state. Sudden,
irreversible, adiabatic processes, generally do not have ∆S = 0.

If, however, when the wall was still in place, the gases in the two sides of the box happened to be in thermal equilibrium
with each other with equal temperature, volume, and number of particles (although there is no reason they needed
to have been like that), then, as we calculated in class, once the wall is removed and the gases mix, we have ∆S = 0.
The wall can then be reinserted and we will return (at least in a thermodynamic sense) to the same equilibrium state
we started with. In this special case, the process of removing the wall, although sudden, is still reversible.

So in general, adiabatic (i.e. ∆Q = 0) does not mean reversible, nor does it mean ∆S = 0. Adiabatic only means
∆Q = ∆S = 0 for quasistatic, reversible, processes.

To see the difference between reversible and irreversible, consider the following example. We have a box of total
volume V that is thermally insulated from the surrounding environment. Inside the box there is a wall, partitioning
the box into two volumes V1 and V2 = V − V1. In the volume V1 there is a gas of N particles in equilibrium at a
temperature T1. The volume V2 is empty.

Reversible

Now imagine that the wall is slowly moved, so that V1 gradually increases to contain all the volume V of the box, as
in a piston. What is the final equilibrium state of the gas in the box? Assume an ideal gas.

This is a quasistatic process, and so it is reversible.
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Since the box is thermally isolated from its surroundings, no heat flows in or out of the box, so ∆Q = 0; the process is
adiabatic. Since the process is adiabatic and reversible, we know that the entropy of the gas does not change ∆S = 0.
So this is an example of adiabatic expansion, where p ∼ 1/V γ with γ = 5/3 for an ideal gas (see Problem Set 2,
problem 1).

The work done by the gas on the moving wall is,

∆W =

∫ V

V1

p dV =

∫ V

V1

cV −γ dV =

[
c

(1− γ)
V (1−γ)

]V
V1

=
3c

2

[
V

−2/3
1 − V −2/3

]
(1.10.S2.7)

The constant c is determined by the initial condition, p1 = NkBT1/V1 = c/V
5/3
1 , so

c = NkBT1V
2/3
1 (1.10.S2.8)

and

∆W =
3

2
NkBT1

[
1−

(
V1
V

)2/3
]

(1.10.S2.9)

The energy of the gas changes according to ∆E = ∆Q−∆W . We have ∆Q = 0 since this is an adiabatic, reversible,
process. Hence ∆E = −∆W . Since E = 3

2NkBT , the temperature of the gas thus must decrease. We therefore have
for the final equilibrium temperature Tf ,

Tf =
2

3

E

NkB
=

2

3

Ei −∆W

NkB
, where Ei =

3

2
NkBT1 is the initial energy of the gas before the wall starts to move.

(1.10.S2.10)

Tf = T1

{
1−

[
1−

(
V1
V

)2/3
]}

= T1

(
V1
V

)2/3

(1.10.S2.11)

So the final equilibrium state is characterized by having volume V , number of particles N , and,

Tf = T1

(
V1
V

)2/3

, pf =
NkBTf
V

, Ef =
3

2
NkBTf , and no change in entropy, ∆S = 0 (1.10.S2.12)

Irreversible

Now imagine that, instead of the wall moving, the wall is suddenly removed, and the gas is free to expand and fill the
entire box. What is the final equilibrium state of the gas in the box in this case?

The process is still adiabatic with ∆Q = 0. But now the gas does no work as it expands (there is no wall to push
against), so ∆W = 0. The change in energy is therefore, ∆E = ∆Q −∆W = 0. Since E = 3

2NkBT , and E and N
stay constant, we conclude that the temperature of the gas does not change and the final equilibrium temperature is
Tf = T1. This process is isothermal expansion.

If we were to now put back the wall, we would not return to the initial state of the box, since there would still be
gas on both sides of the wall. This process is therefore irreversible. Since this process is irreversible, the fact that it
is adiabatic with ∆Q = 0 does not imply that ∆S = 0. We can now compute ∆S.

The entropy of an ideal gas is,

S(E, V,N) =

(
N

N0

)
S0 +NkB ln

[(
E

E0

)3/2(
V

V0

)(
N

N0

)−5/2
]

(1.10.S2.13)
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where N0, S0, E0, and V0 are constants. Since N and E do not change when we remove the wall, we have,

∆S = Sf − Si = S(E, V,N)− S(E, V1, N) = NkB ln

[
V

V1

]
> 0 (1.10.S2.14)

We thus have ∆S > 0 as expected, even though ∆Q = 0.

Below is the problem that stimulated the above discussion.

Consider a box of total volume V , thermally insulated from the surrounding environment. Inside, the box is partitioned
into two regions. In region 1 there is a gas of N particles in a volume V1 in equilibrium at temperature T1. In region
2 there is a gas of N particles in a volume V2 = V −V1 in equilibrium at temperature T2. The two gases are the same
type of gas. The wall separating them is thermally insulating, immoveable, and impermeable. The gases in the two
regions are therefore each in equilibrium, but they are not in equilibrium with each other because of the separating
wall.

Now we suddenly remove the partitioning wall and allow the gases in the two regions to mix. When the system comes
back into equilibrium, what is the final temperature Tf , the final pressure pf , and what is the change in entropy ∆S?

We will assume that the gases can be treated as ideal gases.

Temperature

Since the box is isolated from the surrounding environment, the total energy E = E1 + E2 is conserved. Initially,

E1 =
3

2
NkBT1 and E2 =

3

2
NkBT2 so E = E1 + E2 =

3

2
NkB(T1 + T2) (1.10.S2.15)

After the wall is removed, we have a single gas with 2N particles filling the volume V at temperature Tf , so

E =
3

2
(2N)kBTf =

3

2
NkB(T1 + T2) ⇒ Tf =

T1 + T2
2

(1.10.S2.16)

Pressure

The final pressure of the gas is obtained by the ideal gas law,

pf =
(2N)kBTf

V
=
NkB(T1 + T2)

V1 + V2
(1.10.S2.17)

To relate that to the initial pressures before the wall was removed,

p1 =
NkBT1
V1

and p2 =
NkBT2
V2

⇒ V1 =
NkBT1
p1

and V2 =
NkBT2
p2

(1.10.S2.18)

Using that in Eq. (1.10.S2.17) we get,

pf =
T1 + T2
T1

p1
+ T2

p2

=
p1p2(T1 + T2)

p2T1 + p1T2
(1.10.S2.19)

Suppose, to simplify the problem, we had initially that T1 = T2. Then Tf = T1 = T2 and the above becomes

pf =
2p1p2
p1 + p2

or
1

pf
=

1

2

(
1

p1
+

1

p2

)
(1.10.S2.20)
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The inverse of the final pressure is the average of the inverses of the initial pressures!

In this case, is pf less than or greater than the average of the initial pressures? Define,

p̄ ≡ p1 + p2
2

and δp =
p1 − p2

2
so that p1 = p̄+ δp and p2 = p̄− δp (1.10.S2.21)

Then

pf =
2(p̄+ δp)(p̄− δp)
p̄+ δp+ p̄− δp

=
2(p̄2 − δp2)

2p̄
= p̄− δp2

p̄
< p̄ (1.10.S2.22)

and the final pressure is less than the average of the initial pressures.

Entropy

Initially, the entropy of the system is,

Si = S(E1, V1, N) + S(E2, V2, N) since entropy is additive (1.10.S2.23)

After the wall is removed, we have a single gas of 2N particles in a volume V at energy E = E1 + E2, so,

Sf = S(E, V, 2N) (1.10.S2.24)

The change in entropy ∆S = Sf − Si.

Assuming we are dealing with ideal gases, the entropy of an ideal gas is,

S(E, V,N) =

(
N

N0

)
S0 +NkB ln

[(
E

E0

)3/2(
V

V0

)(
N

N0

)−5/2
]

(1.10.S2.25)

where N0, S0, E0, and V0 are constants. We then have,

Sf =

(
2N

N0

)
S0 + 2NkB ln

[(
E

E0

)3/2(
V

V0

)(
2N

N0

)−5/2
]

=

(
2N

N0

)
S0 +NkB ln

[(
E

E0

)3(
V

V0

)2(
2N

N0

)−5
]

(1.10.S2.26)

while

Si =

(
N

N0

)
S0 +NkB ln

[(
E1

E0

)3/2(
V1
V0

)(
N

N0

)−5/2
]

+

(
N

N0

)
S0 +NkB ln

[(
E2

E0

)3/2(
V2
V0

)(
N

N0

)−5/2
]

(1.10.S2.27)

so

∆S = Sf − Si = NkB ln

[(
E2

E1E2

)3/2(
V 2

V1V2

)
2−5

]
(1.10.S2.28)

We can now use, E1 =
3

2
NkBT1, E2 =

3

2
NkBT2, and E =

3

2
(2N)kBTf to get

E2

E1E2
=

4T 2
f

T1T2
=

(T1 + T2)2

T1T2
, and so,

∆S = NkB ln

[(
(T1 + T2)2

T2T2

)3/2(
(V1 + V2)2

V1V2

)
2−5

]
= NkB ln


(
T1 + T2

2

)3(
V1 + V2

2

)2

(T1T2)3/2 V1V2

 (1.10.S2.29)

= NkB ln

[(
T1 + T2

2
√
T1T2

)3(
V1 + V2

2
√
V1V2

)2
]

(1.10.S2.30)
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Now note that each term in a parenthesis within the logarithm is ≥ 1. For example,

V1 + V2

2
√
V1V2

=
1

2

(√
V1
V2

+

√
V2
V1

)
=

1

2

√√√√(√V1
V2

+

√
V2
V1

)2

=
1

2

√
V1
V2

+
V2
V1

+ 2 ≥ 1

2

√
2 + 2 ≥ 1 (1.10.S2.31)

In the last step we used that the function f(x) = x+ 1/x has a minimum value of 2 at x = 1.

So we conclude that ∆S ≥ 0 . Note, we will have ∆S = 0 only when V1 = V2 and T1 = T2, i.e. when the two

gases on either side of the wall already happened to be in equilibrium with each other. Otherwise, we have ∆S > 0.

As we expect, the entropy increases when the wall is removed. Note that ∆S > 0 even though removing the wall is
an adiabatic process, i.e. there is no heat added or removed from the box, so ∆Q = 0. We can have ∆S > 0 even
though ∆Q = 0 because this is an irreversible process. If we let the gases mix and reach equilibrium, and then we
reinserted the wall, we do not come back to the initial state.

If we did have the special case that V1 = V2 and T1 = T2, then we would have ∆S = 0, and this would be a reversible
process. If we let the gases mix and reach equilibrium, and then reinserted the wall, we do wind up with a state that
is indistinguishable from the initial state.

Note, when we say the above is a reversible process, we mean in the thermodynamic sense. The initial and final
states are both described by saying the gases on each side of the wall have the same equal values of T , V , and N ,
and specifying the values of T , V , and N are sufficient to uniquely describe the equilibrium state of the gas. But one
might think that this process is not reversible in a microscopic sense, since after we reinsert the wall, the particular
particles that are on a given side of the wall is not the exact same set of particles that were on that side of the wall
initially. This observation is what led to Gibbs’ Paradox for the entropy of mixing – see Notes 2-6. Gibbs concluded
that the only way to reconcile this paradox is to assume that all particles in the gas are indistinguishable from each
other – even for a gas of classical particles obeying Newtonian mechanics – and so the final configuration is indeed
indistinguishable from the initial configuration and the process is reversible!


