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Unit 2: Classical Ensembles

In this unit we begin our discussion of statistical mechanics, the field which provides the link between microscopic
mechanics and classical thermodynamics. After a very brief discussion of kinetic theory, which provides a microscopic
characterization of the ideal gas, we consider the more modern ensemble theory of statistical mechanics, based on the
ergodic hypothesis. We discuss the microcanonical, the canonical, and the grand canonical ensembles, as applied to
systems obeying classical mechanics (in unit 3 we will apply these to quantum systems). We show how the partition
functions, defined for these ensembles, allow us to compute the fundamental thermodynamic potentials such as entropy
S, Helmholtz free energy A, and the grand potential Φ. We also briefly discuss the connection between ensemble
theory and Information Theory.

Unit 2-1: Kinetic Theory of the Ideal Gas and the Maxwell Velocity Distribution

Some History

We can start with a brief history of the Ideal Gas Law, the pivotal topic behind the development of much of classical
thermodynamics. The Ideal Gas Law, pV = NkBT , relates the pressure p of the gas to its volume V , number of
particles N , and temperature T . The Boltzmann constant kB is an empirically determined universal constant of
nature (it has the same value for all gases).

1662 - Robert Boyle found that, when one holds temperature T constant and varies the pressure p or the volume V ,
then the product of pressure and volume always stays constant, p1V1 = p2V2.

1787 - Jacques Charles found that, when one holds pressure p constant and varies the temperature T or the volume

V , then the ratio of volume to temperature always stays constant,
V1
T1

=
V2
T2

.

1809 - Joseph Louis Gay-Lussac found that, when one holds volume V constant and varies the pressure p or the

temperature T , then the ratio of pressure to temperature always stays constant,
p1
T1

=
p2
T2

.

1811 = Amedeo Avogadro found that, when one holds temperature T and pressure p constant, and varies the volume

V or the number of particles N , then the ratio of volume to number of particles stays constant,
V1
N1

=
V2
N2

.

1824 - Nicolas Léonard Sadi Carnot proposed the Carnot cycle, giving the maximum thermodynamic efficiency for a
heat engine operating between two fixed temperatures.

1834 - Benôıt Paul Émile Clapeyron put these results together to formulate the Ideal Gas Law, pV = NkBT .

1854 - Rudolf Clausius developed the notion of entropy.

Much of classical thermodynamics was developed before it was widely understood that gases are comprised of micro-
scopic particles undergoing random motion. But with this understanding came attempts to understand ideal gases
on the basis of the mechanics of such particles. Some highlights in the history of this kinetic theory of the ideal gas
are as follows.

∼ 50 BCE - Titus Lucretius Carus wrote On the Nature of Things, advocating that nature is composed of indivisible
objects termed atoms. Though the notion of atoms is older, going back at least to Democritus in ∼ 400 BCE,
Lucretius’ work was rediscovered in the Middle Ages and prompted a revival of atomist philosophies.

1738 - Daniel Bernoulli showed that pressure can be related to the impact of particles hitting a wall, and that heat
is related to the kinetic energy of particles. But this work was largely forgotten until around the 1850’s.

1856 - August Kronig writes a paper with the basics of kinetic theory, proposing that gas molecules travel in straight
lines until they collide with something. In contrast to similar earlier works (such as Bernoulli’s) which were ignored,
Kronig’s paper is widely read.
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1857 - Rudolf Clausius writes a paper on kinetic theory proposing that heat is energy distributed statistically among
the gas particles.

1859 - James Clerk Maxwell presents his paper “Illustrations of the Dynamical Theory of Gases,” developing a
probablistic velocity distribution for the gas particles.

1905 - Albert Einstein develops a theory for the Brownian motion of small particles suspended in a liquid.

1906 - Marian Smoluchowski independently develops a theory of Brownian motion.

Kinetic Theory of the Ideal Gas

We know present a simple version of the kinetic theory of the ideal gas, and derive the Maxwell velocity distribution
for particles in the gas.

In the kinetic theory one interprets the pressure (force/area) on the walls of the box containing the gas as due to the
impact of randomly moving particles hitting the wall, which imparts momentum at a fixed rate to the wall, as they
collide and bounce off.

T
J

particle
colliding with
wall
,
I

We will assume that the collisions of the particles with the wall are elastic, so when
a particle hits the wall the component of its velocity normal to the wall reverses
sign, and the component parallel to the wall remains the same. We can then write
for the pressure,

p =

〈
∆(mv⊥) rate

area

〉
(2.1.1)

where ∆(mv⊥) = 2mv⊥ is the change in the normal component of momentum of a
particle in a collision with the wall, rate is the rate of collisions so that ∆(mv⊥) rate

is the total normal force exerted by collisions on the wall, and area is the area of the wall. Here the angle brackets
〈. . .〉 denote an average over time and over the particles in the gas.
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To compute the rate of collisions, we compute the number of collisions that
will occur within a time period ∆t. If a particle is traveling with a normal
component of velocity of speed v⊥, then it will hit the wall within the time ∆t
provided it is within a distance ` of the wall, where ` = v⊥∆t, and its velocity
is in the direction approaching the wall. The number of particles within a
distance ` of the wall is just the particle density times the volume of the box
within distance ` of the wall, i.e. (N/V )A`, where N is the total number of
particles in the box of volume V , and A is the area of the wall. Of these, on
average half are moving towards the wall and half are moving away from the
wall. So the number of particles that, on average, will hit the wall in time ∆t
is,

# =
1

2

N

V
A` =

1

2

N

V
Av⊥∆t and the rate of collisions is

#

∆t
=

1

2

N

V
Av⊥ (2.1.2)

So the pressure is then,

p =

〈
2mv⊥
A

1

2

N

V
Av⊥

〉
= m

N

V
〈v2⊥〉 (2.1.3)

Now if the gas is isotropic, we expect that the distribution of the component of velocity in any particular direction
should be the same as in any other direction, so for a three dimensional box we have,

〈v2⊥〉 = 〈v2x〉 = 〈v2y〉 = 〈v2z〉 =
1

3
〈v2x + v2y + v2z〉 =

1

3
〈v2〉 (2.1.4)
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So finally we have for the pressure,

p =
1

3
m
N

V
〈v2〉 =

2

3

N

V

〈
1

2
mv2

〉
=

2

3

N

V
〈εkin〉 (2.1.5)

where εkin is the kinetic energy of a particle.

Comparing now to the ideal gas law, pV = NkBT , we conclude for the average kinetic energy of a particle in the gas,

〈εkin〉 =
3

2
kBT (2.1.6)

So this simple kinetic picture tells us that the temperature of the gas is simply a measure of the average kinetic energy
of the particles, kBT = (2/3)〈εkin〉, and then also gives the ideal gas law pV = NkBT .

Maxwell Velocity Distribution (1859)

Let f(v) be the probability density for a particle in a gas to have velocity v. The probability density must be
normalized,∫

d3v f(v) = 1 (2.1.7)

We assume that in an isotropic gas, the probability densities for each component of velocity are statistically inde-
pendent and identically distributed. The joint probability distribution of the components, f(v) = f(vx, vy, vz), must
then factor,

f(v) = h(vx)h(vy)h(vz) (2.1.8)

where h(vµ) is the probability density that the µ-th component of the velocity has value vµ.

Also by the assumption of isotropy, we assume that the probability distribution f(v) is independent of the direction
of v and so a function only of the magnitude of v, or equivalently of the magnitude squared, v2 = v · v,

f(v) = g(v2) so we have g(v2x + v2y + v2z) = h(vx)h(vy)h(vz) (2.1.9)

The only solution to the above equation is when h(vµ) depends exponentially on its argument,

h(vµ) ∝ C(v2µ) so that h(vx)h(vy)h(vz) ∝ C(v2x)C(v2x)C(v2x) = C(v2x+v
2
y+v

2
z) = C(v2) (2.1.10)

where C is a constant. Since we can always write C = elnC , then we can always write C(v2µ) so that h(vµ) has the
form,

h(vµ) = Be−Av
2
µ with A,B > 0 (2.1.11)

Here B > 0 since probability densities must be positive, while A > 0 is required so that the probability density can
be normalized. The distribution h(vµ) is thus a Gaussian probability distribution with variance σ2 = 1/2A. From

the normalization of a Gaussian distribution we have B = 1/
√

2πσ2.

Note: a very good thing to remember is the form of the normalized Gaussian probability distribution:

h(vµ) =
1√

2πσ2
e−v

2
µ/2σ

2

(2.1.12)

We therefore have,

f(v) = h(vx)h(vy)h(vz) = B3e−A(v2x+v
2
y+v

2
z) =

1

(2πσ2)3/2
e−v

2/2σ2

(2.1.13)

The parameter σ2 gives the variance of any component of the velocity,

σ2 = 〈v2µ〉 − 〈vµ〉2 = 〈v2µ〉 since by symmetry 〈vµ〉 = 0. (2.1.14)
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So then we have

〈v2〉 = 〈v2x + v2y + v2z〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉 = 3σ2 (2.1.15)

and the average kinetic energy of a particle is

〈εkin〉 =
1

2
m
〈
v2
〉

=
3

2
mσ2 (2.1.16)

Compare to our result of Eq. (2.1.6) from kinetic theory, 〈εkin〉 =
3

2
kBT , and we conclude,

σ2 =
kBT

m
(2.1.17)

From Eq. (2.1.12) we thus get the probability distribution for velocity component vµ,

h(vµ) =

√
m

2πkBT
e−mv

2
µ/(2kBT ) (2.1.18)

and for the probability distribution of the full velocity v,

f(v) =

(
m

2πkBT

)3/2

e−mv
2/2kBT =

(
m

2πkBT

)3/2

e−εkin/kBT (2.1.19)

The f(v) above is the Maxwell velocity distribution.

We see that f(v) is proportional to the familiar Boltzmann factor e−εkin/kBT . We will see a lot more of the Boltzmann
factor!


