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Unit 2-13: Examples: The Specific Heat of Solids, Curie Paramagnetism

Here we will apply what we have learned to consider two well know problems from condensed matter physics. What
is the contribution of elastic vibrations to the specific heat of a solid, and what is the paramagnetic susceptibility of
magnetic moments at finite temperature.

Elastic Vibrations of a Solid

We can imagine the Hamiltonian for the periodic array of atoms in a crystalline solid to be,

H =
∑
i

p2i
2M

+
1

2

∑
i6=j

U(ri − rj) (2.13.1)

The first term is the kinetic energy of the atomic motion, and the second term is a pairwise atomic interaction.

The position of atom i can be written as,

ri = Ri + ui (2.13.2)

where Ri is the atom’s position in the perfect periodic array of the crystal, and ui is a small displacement from this
position due to thermal fluctuations.

Then we can expand U to second order in the small ui,

U(ri−rj) = U(Ri−Rj +ui−uj) = U(Ri−Rj)+∇U · (ui−uj)+
1

2

3∑
α,β=1

∂2U

∂riαrjβ
(uiα−ujα)(uiβ−ujβ) (2.13.3)

where α, β label the coordinate directions x, y, z.

Now assuming the position Ri describe a stable mechanical equilibrium (i.e. the positions {Ri} give a local minimum
of U , and so the net force on each atom is zero when each atom is at Ri), then the linear term in the expansion of H
must vanish,∑

i6=j

∇U · (ui − uj) = 0 (2.13.4)

otherwise there would be some set of displacements that would lower the energy U .

The Hamiltonian is then,

H =
∑
i

p2i
2M

+
1

2

∑
i6=j

3∑
α,β=1

∂2U

∂riαrjβ
(uiα − ujα)(uiβ − ujβ) + constant (2.13.5)

We see that H is quadratic in the displacements ui. We can rewrite the above as,

H =
∑
i

p2i
2M

+
∑
i 6=j

∑
α,β

Dαβij uiαujβ (2.13.6)

where the dynamical matrix Dαβij is an appropriate linear combination of the
∂2U

∂riα∂rjβ
.

One can show that it is always possible to choose normal coordinate, ũiα =
∑
jβ

Cαβij ujβ such that the above quadratic

form is diagonalized,∑
i6=j

∑
α,β

Dαβij uiαujβ =
∑
iα

D̃αi ũ2iα (2.13.7)
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The D̃αi are just the eigenvalues of Dαβij , and the normal coordinates ũiα are the corresponding eigenvectors. By
transforming to the normal coordinates, the ũiα are decoupled from one another.

So now H is quadratic in each of the 3N momenta piα, and is quadratic in each of the 3N normal coordinates ũiα.
By the equipartition theorem we thus conclude that the average energy due to the thermal vibrations of the solid is,

E = 〈H〉 = (3N + 3N)
1

2
kBT = 3NkBT = E (2.13.8)

The contribution to the specific heat of the solid, due to these atomic vibrations, is therefore,

CV =

(
∂E

∂T

)
V,N

= 3NkB the Law of Dulong and Petit (2.13.9)

This is the Law of Dulong and Petit, proposed in 1819 by Pierre Louis Dulong and Alexis Thérèse Petit.
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This classical result predicts a CV that is a constant independent of
temperature. In real life, however, one finds a CV as shown in the
sketch to the right. As T decreases, CV decreases below the Dulong
and Petit value and goes to zero as T → 0. This decrease is notice-
able already at room temperatures. This experimental observation
is unexplainable in the context of our classical model.

It was one of the early successes of quantum mechanics to explain why the Law of Dulong and Petit fails as T decreases.
Usually we think of quantum mechanics as something that is important for atomic phenomena at the microscopic
scale. When quantum effects are observed in macroscopic systems, like superfluids and superconductors, we usually
think this happens only at very low temperatures. The failure of the Law of Dulong and Petit is an example where
the effects of quantum mechanics can be observed in a macroscopic system at room temperature!

We will see the quantum solution to this problem later when we discuss the statistics of bosons.

Paramagnetism of Classical Spins

Imagine that we have N distinguishable spins µi in our system. We will ignore any interactions between the spins,
and only consider the interaction of each spin with an external magnetic field h.

This might be a model for a solid in which there are a set of atomic impurities in the crystalline lattice at fixed spatial
positions, such that the impurities each possess a net magnetic moment µi. The magnetic moment on each impurity
is modeled as a “spin.” The spins are distinguishable because they are each attached to a particular impurity, and
that impurity is confined to a particular position within the crystal lattice of the solid, so we can identify which spin
is which.

The Hamiltonian of the N -spin system is,

H =

N∑
i=1

H(1)(µi) with H(1)(µi) = −µi · h (2.13.10)

where µi is the spin of impurity i. The minus sign is because the energy is lowest when µi is parallel to h. The
Hamiltonian H is the sum of single-spin terms, because the spins are assumed to be non-interacting. This means that
the N -particle partition function will factor into the product of single-particle partition functions.

If we take µ = |µi| as the magnitude of the spin, and θi as the angle of µi with respect to h, then,

H(1)(µi) = −µh cos θi (2.13.11)
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To evaluate the partition function, we integrate the Boltzmann factor e−βH over the orientations (θi, ϕi) of each spin,
doing the integration in spherical coordinates where h is along the ẑ axis,

QN =

(
N∏
i=1

∫ 2π

0

dϕi

∫ π

0

dθi sin θi

)
e−βH =

(
N∏
i=1

∫ 2π

0

dϕi

∫ π

0

dθi sin θi

)
e−β

∑
iH

(1)(µi)

(2.13.12)

=

N∏
i=1

(∫ 2π

0

dϕi

∫ π

0

dθi sin θi e−βH
(1)(µi)

)
= (Q1)

N
(2.13.13)

where the single-particle partition function is,

Q1 =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ e−βH
(1)(µ) =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ eβµh cos θ = 2π

∫ π

0

dθ sin θ eβµh cos θ (2.13.14)

Note, here we have QN = (Q1)
N

rather than QN = 1
N ! (Q1)

N
as we saw before. This is because in this case the spins

are distinguishable, and so there is no Gibbs factor of 1/N ! when writing QN .

We can proceed to evaluate Q1 by making a substitution of variables, x = − cos θ so dx = dθ sin θ,

Q1 = 2π

∫ π

0

dθ sin θ eβµh cos θ = 2π

∫ 1

−1
dx e−βµhx =

2π

−βµh
[
e−βµh − e+βµh

]
=

4π

βµh
sinh(βµh) (2.13.15)

Here sinh is the hyperbolic sine, sinhx = (ex − e−x)/2.

The average total magnetization of the system M is oriented parallel to h. If we choose h = hẑ then M = M ẑ, and,

M = N〈µ cos θ〉 = N

∫ 2π

0

dϕ

∫ π

0

dθ sin θ eβµh cos θµ cos θ∫ 2π

0

dϕ

∫ π

0

dθ sin θ eβµh cos θ

(2.13.16)

=
N

β

∂

∂h

[∫ 2π

0

dϕ

∫ π

0

dθ sin θ eβµh cos θ

]
∫ 2π

0

dϕ

∫ π

0

dθ sin θ eβµh cos θ

(2.13.17)

=
N

β

1

Q1

(
∂Q1

∂h

)
= NkBT

∂

∂h
[lnQ1] =

∂

∂h

[
kBT lnQN1

]
=

∂

∂h
[kBT lnQN ] (2.13.18)

= −
(
∂A

∂h

)
T,h

(2.13.19)

When we apply the magnetic field h = hẑ, then h is a new thermodynamic variable. The above shows that the
magnetization M is the thermodynamic conjugate variable to the magnetic field h.

Using our result Q1 =
4π

βµh
sinh(βµh), we can now evaluate M ,

M

N
=

1

βQ1

(
∂Q1

∂h

)
=

4π

[
cosh(βµh)

h
− sinh(βµh)

βµh2

]
4π sinh(βµh)

µh

= µh

[
coth(βµh)

h
− 1

βµh2

]
(2.13.20)

M

N
= µ

[
coth(βµh)− 1

βµh

]
(2.13.21)
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The function,

L(x) = cothx− 1

x
is called the Langevin function. (2.13.22)

For large x, L(x) =
1 + e−2x

1− e−2x
− 1

x
≈ 1− 1

x
→ 1.

For small x,

L(x) =
coshx

sinhx
− 1

x
≈

1 +
x2

2

x+
x3

6

− 1

x
=

1 +
x2

2

x

(
1 +

x2

6

) − 1

x
≈

(
1 +

x2

2

)(
1− x2

6

)
x

− 1

x
(2.13.23)

≈
1 +

x2

2
− x2

6
x

− 1

x
=

1

x
+
x

2
− x

6
− 1

x
=
x

3
(2.13.24)

So as x→ 0, L(x)→ x/3.

In our problem, x = βµh.

At large h or large β (small T ), we thus have,

M

N
= µL(βµh) ≈ µ− 1

βh
→ µ (2.13.25)

and all the spins approach perfect alignment with h.

At small h or small β (large T ), we have,

M

N
= µL(βµh) ≈ µ2h

3kBT
(2.13.26)

The magnetic susceptibility is then,

χ ≡ lim
h→0

(
∂M

∂h

)
=

Nµ2

3kBT
∼ 1

T
the Curie Law of Paramagnetism (2.13.27)

This χ ∼ 1/T is known as the Curie law of paramagnetism, discovered experimentally by Pierre Curie in ∼ 1895.


