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Unit 2-14: A Note About the Proper Choice of Coordinates

We can write the partition functions as:

microcanonical : Ω(E, V,N) =

∫
all degrees
of freedom

δ(E −H)

canonical : QN (T, V ) =

∫
all degrees
of freedom

e−βH

(2.14.1)

where the integral is meant as an integral over all the degrees of freedom that characterize the system. If the degrees
of freedom are continuous, then the integration should include an appropriate factor (like h−3N for the gas of N
classical particles) so that the partition function is a dimensionless quantity.

For classical systems, with continuous degrees of freedom, it is essential that the degrees of freedom one integrates over
be a set of Hamiltonian canonically conjugate coordinate-momenta pairs (qi, pi). The reason is Liouville’s theorem,
discussed in Notes 2-3. To describe equilibrium the probability density for the system to be at a particular point
in phase space should not vary with time, i.e. ∂ρ/∂t = 0. According to Liouville’s theorem, this will be the case
whenever all states of a given energy E are equally likely, i.e. ρ({qi, pi}) = ρ(H[{qi, pi}]). But Liouville’s theorem
only applies if we are labeling the states by a set of Hamiltonian canonically conjugate coordinate-momenta pairs –
recall, we had to use Hamilton’s equations of motion to derive Liouville’s theorem.

If {qi, pi}, i = 1 to 3N , are such canonically conjugate degrees of freedom, then we have for the canonical partition
function,

QN (T, V ) =
C

h3N

∫
dq1dq2 · · · dq3N

∫
dp1dp2 · · · dp3N e−βH[q1,...,q3N ,p1,...,p3N ] (2.14.2)

where C = 1/N ! if the particles are indistinguishable, and C = 1 if the particles are distinguishable.

Now sometimes it might be convenient to label states by some other set of coordinates, for example {qi, q̇i}. In that
case, one can compute the partition function in terms of the convenient coordinates provided one makes the correct
transformation of the variables of integration,

QN (T, V ) =
C

h3N

∫
dqidpi e−βH[qi,pi] =

C

h3N

∫
dqidq̇i Je−βH[qi,q̇i] (2.14.3)

where J is the Jacobian of the transformation from {qi, pi} to {qi, q̇i}. It is crucial to include this Jacobian factor to
get the correct result for the partition function.

If one goes from a set of variables {y1, y2, . . . , yM} to a new set of variables {x1, x2, . . . , xM}, then the Jacobian is
given by,

J = det



∂y1
∂x1

∂y1
∂x2

· · ·

∂y2
∂x1

∂y2
∂x2

· · ·

· ·
· ·
· ·


where “det” means the determinant of the matrix (2.14.4)



2

Then one has,

M∏
i=1

∫
dyi =

M∏
i=1

∫
dxi J (2.14.5)

Example:

Consider a classical gas of N non-interacting charged particles, each with charge q, in an external magnetic field.
Although it might seem strange to assume that the charged particles do not interact with each other, this turns out
not to be a bad approximation for electrons in a metal (take PHY 512!). We will, however, take the charged particles
to interact with the magnetic field.

From mechanics you know that the Hamiltonian for such a system is,

H =

N∑
i=1

1

2m

∣∣∣pi − q

c
A(ri)

∣∣∣2 where A(r) is the magnetic vector potential. (2.14.6)

The particle’s velocity vi, in terms of the canonical momentum pi, is given by,

vi =
pi −

q

c
A(ri)

m
(2.14.7)

At first glance it might seem that we could not compute the average total energy E = 〈H〉 using the equipartition
theorem, since H couples pi to ri via A(ri).

However, if we directly compute the single-particle partition function Q1,

Q1 =
1

h3

∫
d3r

∫
d3p e−β|p−

q
cA(r)|2/2m (2.14.8)

we can do the following trick. Doing the integration over p first and the integration over r last, then since r is a
fixed quantity when we do the p integration, than as far as the p integration is concerned, q

cA(r) is just some fixed
constant p0. So we can make a transformation of variables in the integration from p to p′ = p − p0, and since the
limits of integration for p′ remain ±∞, we can write,

Q1 =
1

h3

∫
d3r

∫
d3p′ e−β|p

′|2/2m (2.14.9)

This now gives exactly the same Q1 as for a gas of particles that is not in a magnetic field! Hence we can conclude
that the total energy of the gas in the magnetic field is the same as the gas in zero field, E = 3

2NkBT .

We can view this result in terms of a coordinate transform, like we discussed above. Instead of writing the partition
function in terms of the canonical coordinates {ri,pi}, with pi = mvi + q

cA(ri) the canonical momentum, we could
instead use the coordinates {ri,vi}. We then would have,

Q1 =
1

h3

∫
d3r

∫
d3v J e−βm|v|

2/2 (2.14.10)

Here J = m3 is the Jacobian of the transformation from {r,p} to {r,v}. We can now do the integration over v and
get the same result for Q1 as in the case with no magnetic field. The thing that makes this work simply in this case
is that the Jacobian J is just a constant, and not some function of r and v.

Warning! Our result, that the energy E = 3
2NkBT for a gas of non-interacting charged particles in a magnetic field is

the same as when the field is zero, holds only for a system of classical particles. When we treat the particles quantum
mechanically, this will no longer be true.


