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Unit 2-17: The Grand Canonical Ensemble and the Grand Potential

Recall, the Grand Potential Φ(T, V, µ), which we introduced as the Legendre transform of E(S, V,N) from S to T
and from N to µ, can also be related to a Legendre transform of S(E, V,N).

To refresh this point, recall Φ = E − TS − µN ⇒ −Φ/T = S − E/T + (µ/T )N , where (∂S/∂E)V,N = 1/T and
(∂S/∂N)E,V = −µ/T . So −Φ/T is the Legendre transform of S from E to 1/T and from N to −µ/T . We have that
E and 1/T are conjugate variables, and N and −µ/T are conjugate variables.

By the properties of Legendre transforms, we then have,

E = −
(
∂(−Φ/T )

∂(1/T )

)
V,µ/T

and N = −
(
∂(−Φ/T )

∂(−µ/T )

)
1/T,V

(2.17.1)

If we introduce β ≡ 1

kBT
and α ≡ µ

kBT
, then we can write the above as,

E = −
(
∂(−Φ/kBT )

∂β

)
V,α

and N =

(
∂(−Φ/kBT )

∂α

)
β,V

(2.17.2)

Now consider lnL, with L the grand canonical partition function,

L =
∑
i

e−(Ei−µNi)/kBT =
∑
i

e−βEi eαNi (2.17.3)

We have,(
∂lnL
∂β

)
V,α

=
1

L

(
∂L
∂β

)
V,α

=
1

L
∑
i

e−βEi eαNi(−Ei) (2.17.4)

= − 1

L
∑
i

e−β(Ei−µNi)Ei = −
∑
i

PiEi = −〈E〉 (2.17.5)

where we used Pi =
e−β(Ei−µNi)

L
is the probability to be in state i in the grand canonical ensemble.

Similarly,(
∂lnL
∂α

)
β,V

=
1

L

(
∂L
∂α

)
β,V

=
1

L
∑
i

e−βEi eαNi(Ni) (2.17.6)

=
1

L
∑
i

e−β(Ei−µNi)Ni =
∑
i

PiNi = 〈N〉 (2.17.7)

Comparing Eqs. (2.17.5) and (2.17.7) with Eq. (2.17.2) leads to the identification,

lnL = − Φ

kBT
⇒ Φ = −kBT lnL (2.17.8)

This is analogous to the relation between the canonical partition function QN and the Helmholtz free energy, A =
−kBT lnQN .

Note: From the Euler relation, E = TS−pV +µN , and the Legendre transform Φ = E−TS−µN , we had Φ = −pV ,
so now we can write,

p =
kBT

V
lnL(T, V, µ) (2.17.9)
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Note: Taking a derivative at constant α =
µ

kBT
= ln z is not the same as taking a derivative at constant µ. For

example,(
∂lnL
∂β

)
V,µ

=
1

L

(
∂L
∂β

)
V,µ

=
1

L
∑
i

∂

∂β

(
e−β(Ei−µNi)

)
=

1

L
∑
i

e−β(Ei−µNi)(−Ei + µNi) (2.17.10)

= −
∑
i

Pi(Ei − µNi) = −〈E〉+ µ〈N〉 (2.17.11)

Similarly, taking a derivative with respect to µ is not the same as taking a derivative with respect to α = µ/kBT ,(
∂lnL
∂µ

)
β,V

=
1

L
∑
i

∂

∂µ

(
e−β(Ei−µNi)

)
=

1

L
∑
i

e−β(Ei−µNi)βNi (2.17.12)

=
∑
i

Pi βNi = β〈N〉 (2.17.13)

Sometimes it is useful to view z = eα = eβµ as the variable instead of α or µ. We therefore have,(
∂lnL
∂β

)
V,z

= −〈E〉 (2.17.14)

(since differentiating at constant z is the same as differentiating at constant α), but since dα = d(ln z) = dz/z we can
write,

〈N〉 =

(
∂lnL
∂α

)
β,V

= z

(
∂lnL
∂z

)
β,V

(2.17.15)

To summarize, we have:

〈N〉 =

(
∂lnL
∂α

)
β,V

= z

(
∂lnL
∂z

)
β,V

=
1

β

(
∂lnL
∂µ

)
β,V

〈E〉 = −
(
∂lnL
∂β

)
V,α

= −
(
∂lnL
∂β

)
V,z

but 〈E〉 − µ〈N〉 = −
(
∂lnL
∂β

)
V,µ

(2.17.16)

All these relations are consistent with Φ(T, V, µ) = −kBT lnL(T, V, µ).

Analogous to what we did in comparing the canonical and the microcanonical ensembles, we now want to show that
in the thermodynamic limit, N → ∞, computing in the grand canonical ensemble, with a fixed µ determining an
average 〈N〉, gives the same result as computing in the canonical ensemble with fixed N = 〈N〉.

Thus one can use the grand canonical ensemble even if the physical system of interest in not in contact with a reservoir.
Just choose a T and a µ to give the desired E and N as the average energy and average number of particles. Because,
as N →∞, the probability for a state in the grand canonical ensemble to have some E′ and N ′ is so sharply peaked
about the averages 〈E〉 and 〈N〉, the difference between using the grand canonical ensemble vs the microcanonical
ensemble at fixed E and N will be negligible. We will find that it is particularly useful to employ this conclusion
when we treat quantum ideal gases.

Fluctuations of Particle Number and of Energy

To demonstrate that the grand canonical and the canonical ensembles are equivalent in the thermodynamic limit, we
want to show that the relative fluctuations in both N and E will vanish as N →∞.
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Fluctuations of the Particle Number N

We first consider the fluctuations of particle number, 〈N2〉 − 〈N〉2, in the grand canonical ensemble.

From Eq. (2.17.16) we have,

〈N〉 =
1

β

(
∂lnL
∂µ

)
T,V

(2.17.17)

Now consider,

1

β

(
∂〈N〉
∂µ

)
T,V

=
1

β2

(
∂2 lnL
∂µ2

)
T,V

=
1

β2

∂

∂µ

(
1

L
∂L
∂µ

)
T,V

(2.17.18)

=
1

β2

[
1

L

(
∂2L
∂µ2

)
T,V

− 1

L2

(
∂L
∂µ

)2

T,V

]
(2.17.19)

Since
1

βL

(
∂L
∂µ

)
T,V

=
1

β

(
∂ lnL
∂µ

)
T,V

= 〈N〉, the second term above is 〈N〉2.

The first term is,

1

β2L

(
∂2L
∂µ2

)
T,V

=
1

β2L
∂2

∂µ2

(∑
i

e−βEi eβµNi

)
T,V

=
1

β2L
∑
i

e−β(Ei−µNi)(βNi)
2 =

∑
i

PiN2
i = 〈N2〉 (2.17.20)

So we have for the variance of N ,

σ2
N ≡ 〈N2〉 − 〈N〉2 =

1

β

(
∂〈N〉
∂µ

)
T,V

∼ N since β and µ are intensive (2.17.21)

So the relative fluctuation in N is,

σN
〈N〉

∼
√
N

N
∼ 1√

N
→ 0 as N →∞. (2.17.22)

Since the relative fluctuation in N vanishes in the thermodynamic limit, the grand canonical ensemble becomes
equivalent to the canonical ensemble as N →∞.

Just like we saw in the canonical ensemble, that the fluctuations in energy σ2
E are related to the specific heat CV ,

here we can express the fluctuations in the number of particles σ2
N in terms of the familiar response function κT , the

isothermal compressibility.

σ2
N =

1

β

(
∂〈N〉
∂µ

)
T,V

(2.17.23)

Write v = V/N and so N = V/v. Then,(
∂〈N〉
∂µ

)
T,V

=

(
∂(V/v)

∂µ

)
T,V

= V

(
∂(1/v)

∂µ

)
T,V

= − V
v2

(
∂v

∂µ

)
T,V

(2.17.24)

By the Gibbs-Duhem relation, Ndµ = V dp− SdT , so dµ = vdp− sdT . So at constant T we have dµ = vdp. So,(
∂〈N〉
∂µ

)
T,V

= − V
v2

(
∂v

∂µ

)
T,V

= − V
v2

(
∂v

v∂p

)
T,V

= −N
2

V

1

v

(
∂v

∂p

)
T,V

(2.17.25)

Now since both v and p are intensive, they must be independent of N and V , and so (∂v/∂p)T is independent of N
and V . So,

1

v

(
∂v

∂p

)
T,V

=
1

v

(
∂v

∂p

)
T,N

=
1

v

(
∂(V/N)

∂p

)
T,N

=
1

vN

(
∂V

∂p

)
T,N

=
1

V

(
∂V

∂p

)
T,N

= −κT (2.17.26)
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Finally,

σ2
N =

1

β

(
∂〈N〉
∂µ

)
T,V

=
1

β

(
−N

2

V

)
(−κT ) =

N2

βV
κT (2.17.27)

and

σN
〈N〉

=

√
kBTκT
V

(2.17.28)

Fluctuation of the Energy E

We now consider the fluctuation of the energy, 〈E2〉 − 〈E〉2, within the grand canonical ensemble. We will see that
there are two contributions. One term arises from the fixed temperature, as we found in the canonical ensemble. An
addition term arises due to the fluctuations in the number of particles N .

Recall that in the canonical ensemble we had,

〈E2〉 − 〈E〉 = −∂〈E〉
∂β

= −kB
∂〈E〉
∂(1/T )

= kBT
2 ∂〈E〉
∂T

= kBT
2CV (2.17.29)

with CV the specific heat at constant volume.

We now want to see how the fluctuations of N in the grand canonical ensemble will effect the fluctuation of E.

We have,

L =
∑
i

e−β(Ei−µNi) =
∑
i

e−βEi zNi where z = eβµ is the fugacity. (2.17.30)

Then,

−
(
∂lnL
∂β

)
V,z

= − 1

L

(
∂L
∂β

)
V,z

=
1

L
∑
i

e−βEi zNi Ei =
∑
i

PiEi = 〈E〉 (2.17.31)

and, (
∂2 lnL
∂β2

)
V,z

= −
(
∂〈E〉
∂β

)
V,z

=
1

L

(
∂2L
∂β2

)
V,z

− 1

L2

(
∂L
∂β

)2

V,z

=
1

L

(
∂2L
∂β2

)
V,z

− 〈E〉2 (2.17.32)

Now,

1

L

(
∂2L
∂β2

)
V,z

=
1

L
∑
i

e−βEi zNi E2
i =

∑
i

PiE2
i = 〈E2〉 (2.17.33)

So finally we have,(
∂2 lnL
∂β2

)
V,z

= −
(
∂〈E〉
∂β

)
V,z

= kBT
2

(
∂〈E〉
∂T

)
V,z

= 〈E2〉 − 〈E〉2 = σ2
E (2.17.34)

Since E is extensive, while β is intensive, then we have σ2
E ∼ N , and the relative fluctuation in energy is,

σE
〈E〉
∼
√
N

N
∼ 1√

N
→ 0 as N →∞. (2.17.35)

So the relative fluctuation of E in the grand canonical ensemble vanishes in the thermodynamic limit.
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Since Eq. (2.17.34) for σ2
E involves (∂E/∂T )V,z, one might think this is just proportional to CV . However CV is

computed at constant V and N , while the derivative in Eq. (2.17.34) is computed at constant V and z. To express
this derivative in terms of more familiar response functions we can do as follows. Regard E as a function of (T, V,N),
which follows from,

E(T, V,N) = −
(
∂(−A/T )

∂(1/T )

)
V,N

since −A/T is the Legendre transform of S from E to 1/T

Then regard N as a function of (T, V, z) by using,

N(T, V, µ) = −
(
∂Φ

∂µ

)
T,V

and then substituting in µ = kBT ln z to get N(T, V, z)

We can then write E(T, V,N) = E(T, V,N(T, V, z)) and use the chain rule for differentiation to get,(
∂〈E〉
∂T

)
V,z

=

(
∂〈E〉
∂T

)
V,N

+

(
∂〈E〉
∂N

)
T,V

(
∂〈N〉
∂T

)
V,z

(2.17.36)

Now

(
∂〈E〉
∂T

)
V,N

= CV , the specific heat at constant volume. So the first term in Eq. (2.17.36) gives the same

contribution to σ2
E as one finds in the canonical ensemble. The second term in Eq. (2.17.36) gives the additional

fluctuation in E that arise because N is fluctuating.

For the second term one can show (proof left to reader),(
∂〈N〉
∂T

)
V,z

=
1

kBT 2

[
〈EN〉 − 〈E〉〈N〉

]
=

1

T

(
∂〈E〉
∂µ

)
T,V

(2.17.37)

(one can show this directly by taking appropriate derivatives of lnL, or one can recognize it as an appropriate Maxwell
relation for the potential −Φ/T viewed as a function of the variables (1/T, V,−µ/T )) and then use this to write,(

∂〈E〉
∂µ

)
T,V

=

(
∂〈E〉
∂N

)
T,V

(
∂〈N〉
∂µ

)
T,V

=

(
∂〈E〉
∂N

)
T,V

βσ2
N using Eq. (2.17.21) for σ2

N (2.17.38)

So finally we have,

σ2
E = kBT

2

[
CV +

(
∂〈E〉
∂N

)
T,V

1

T

(
∂〈E〉
∂N

)
T,V

βσ2
N

]
(2.17.39)

σ2
E = kBT

2CV +

(
∂〈E〉
∂N

)2

T,V

σ2
N (2.17.40)

Note, CV ∼ N is extensive, (∂〈E〉/∂N) ∼ N/N is intensive, σ2
N ∼ N is extensive. Hence σ2

E ∼ N is extensive, and

σE
〈E〉
∼
√
N

N
∼ 1√

N
(2.17.41)

as we saw before.


