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Unit 2-18: Non-Interacting Particles in the Grand Canonical Ensemble

We had for the grand canonical partition function,

L =

∞∑
N=0

zN QN (T, V ) where z = eβµ is the fugacity, and QN is the canonical partition function. (2.18.1)

For non-interacting particles we had,

QN (T, V ) =
1

N !

[
Q1(T, V )

]N
for indistinguishable particles, as in the ideal gas (2.18.2)

and

QN (T, V ) =
[
Q1(T, V )

]N
for distinguishable particles, as in paramagnetic spins (2.18.3)

where Q1 is the single particle partition function.

Indistinguishable Particles

L =

∞∑
N=0

zN QN =

∞∑
N=0

(zQ1)N

N !
= ezQ1 (2.18.4)

Distinguishable Particles

L =

∞∑
N=0

zN QN =

∞∑
N=0

(zQ1)N =
1

1− zQ1
assuming zQ1 < 1 for the series to converge. (2.18.5)

Indistinguishable Particles

For indistinguishable particles we thus have lnL = z Q1 and so,

−pV = Φ = −kBT lnL = −kBTz Q1 ⇒ p =
kBT

V
z Q1 (2.18.6)

Also

N = −
(
∂Φ

∂µ

)
T,V

= kBT

(
∂z

∂µ

)
T

Q1 = kBT β z Q1 = z Q1 (2.18.7)

So, combining these last two results, we have,

p =
NkBT

V
the ideal gas law, no matter what is Q1. (2.18.8)

So, no matter what is the single particle Hamiltonian (i.e. no matter what is Q1), indistinguishable non-interacting
particles will always obey the ideal gas law.

Ideal Gas of Indistinguishable Particles

For a simple gas of point particles,

Q1 =
1

h3

∫
d3p

∫
d3r e−βp

2/2m = (2πmkBT )3/2
V

h3
= V f(T ), with f(T ) =

(
2πmkBT

h2

)3/2

(2.18.9)



2

For a more complicated gas, for example where the particles might have internal degrees of freedom, Q1 will have this
same form but with a different f(T ).

We have,

L = ezQ1 = ezV f(T ) ⇒ lnL = zV f(T ) (2.18.10)

The grand potential is then

Φ = −kBT lnL = −kBTzV f(T ) = −pV ⇒ p = kBTzf(T ) recall, z = eβµ (2.18.11)

and

N = −
(
∂Φ

∂µ

)
T,V

= −
(
∂Φ

∂z

)
T,V

(
∂z

∂µ

)
T

= kBTV f(T )βeβµ = zV f(T ) (2.18.12)

Combining the above two results give,

p

kBT
= zf(T ) and

N

V
= zf(T ) ⇒ pV = NkBT (2.18.13)

So we get the ideal gas law no matter what is f(T ), i.e. no matter what might be the internal degrees of freedom of
the particles.

Also,

E = −
(
∂lnL
∂β

)
V,z

= kBT
2

(
∂lnL
∂T

)
V,z

= kBT
2zV

df

dT
using lnL = zV f(T ) (2.18.14)

= kBT
2N

1

f

df

dT
= kBT

2N

(
∂ln f

∂T

)
using N = zV f(T ) (2.18.15)

and so,

CV =

(
∂E

∂T

)
V,N

= 2kBTN

(
∂ln f

∂T

)
+ kBT

2N

(
∂2 ln f

∂T 2

)
(2.18.16)

If the single particle Hamiltonian has only harmonic degrees of freedom (for example p, or harmonic internal degrees
of freedom such as internal vibrations of a molecule), one has f ∝ Tn for some power n (for a simple point particle,
where p is the only harmonic degree of freedom, one has n = 3/2 as in Eq. (2.18.9)). In this case,(

∂ln f

∂T

)
=

(
∂[n lnT ]

∂T

)
=
n

T
⇒ E = kBT

2N

(
∂n

∂T

)
= nkBTN (2.18.17)

and

CV = 2nkBN + kBT
2N

(
−n
T 2

)
= nkBN (2.18.18)

The Helmholtz free energy is,

A = Φ + µN = −kBTzV f(T ) + (kBT ln z)(zV f(T )) using µ = kBT ln z and N = zV f(T ) (2.18.19)

= zV f(T ) kBT
[

ln z − 1
]

= NkBT
[

ln z − 1
]

(2.18.20)

and so,

A(T, V,N) = NkBT

[
ln

(
N

V f(T )

)
− 1

]
where we used N = zV f ⇒ z =

N

V f
(2.18.21)
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This result agrees with a direct calculation from the canonical ensemble,

QN =
[Q1]N

N !
=
V NfN

N !
⇒ A = −kBT lnQN = −kBT ln

(
V NfN

N !

)
(2.18.22)

A = −kBTN lnV f + kBT (N lnN −N) = −NkBT +NkBT ln

(
N

V f

)
= NkBT

[
ln

(
N

V f(T )

)
− 1

]
(2.18.23)

And, lastly, the entropy is,

S = −
(
∂A

∂T

)
V,N

= NkB

[
ln

(
N

V f(T )

)
− 1

]
−NkBT

d(ln f)

dT
(2.18.24)

Distinguishable Particles

This corresponds to a situation in which particles are localized, so that we can distinguish them by their spatial
location.

Now we expect Q1 = φ(T ) – it is not proportional to the volume V since the particles are localized. Then,

L =
1

1− zQ1
=

1

1− zφ(T )
note, if we had Q1 ∝ V , then the series in Eq. (2.18.5) would not converge! (2.18.25)

Then

Φ = −kBT lnL (2.18.26)

N = −
(
∂Φ

∂µ

)
T,V

= −
(
∂z

∂µ

)
T

(
∂Φ

∂z

)
T,V

= −βeβµ(−kBT )
1

L
∂L
∂z

(2.18.27)

= z(1− zφ)
φ

(1− zφ)2
=

zφ

1− zφ
(2.18.28)

⇒ (1− zφ)N = zφ ⇒ zφ =
N

1 +N
=

1

1 + 1/N
≈ 1− 1

N
for N � 1 (2.18.29)

and

E = −
(
∂lnL
∂β

)
V,z

= kBT
2

(
∂lnL
∂T

)
V,z

= kBT
2(1− zφ)

z(dφ/dT )

(1− zφ)2
(2.18.30)

=
kBT

2z(dφ/dT )

1− zφ
= kBT

2N
1

φ

dφ

dT
= kBT

2N

(
∂lnφ

∂T

)
(2.18.31)

and

A = Φ + µN = −kBT ln

(
1

1− zφ

)
+ (kBT ln z)N = kBT

[
ln(1− zφ) +N ln z

]
(2.18.32)

Now use 1− zφ ≈ 1/N and z ≈ 1/φ to get,

A = −kBTN lnφ(T ) +O(lnN) (2.18.33)


