Unit 2-18: Non-Interacting Particles in the Grand Canonical Ensemble

We had for the grand canonical partition function,

$$
\begin{equation*}
\mathcal{L}=\sum_{N=0}^{\infty} z^{N} Q_{N}(T, V) \quad \text { where } z=\mathrm{e}^{\beta \mu} \text { is the fugacity, and } Q_{N} \text { is the canonical partition function. } \tag{2.18.1}
\end{equation*}
$$

For non-interacting particles we had,

$$
\begin{equation*}
Q_{N}(T, V)=\frac{1}{N!}\left[Q_{1}(T, V)\right]^{N} \quad \text { for indistinguishable particles, as in the ideal gas } \tag{2.18.2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{N}(T, V)=\left[Q_{1}(T, V)\right]^{N} \quad \text { for distinguishable particles, as in paramagnetic spins } \tag{2.18.3}
\end{equation*}
$$

where Q_{1} is the single particle partition function.
Indistinguishable Particles

$$
\begin{equation*}
\mathcal{L}=\sum_{N=0}^{\infty} z^{N} Q_{N}=\sum_{N=0}^{\infty} \frac{\left(z Q_{1}\right)^{N}}{N!}=\mathrm{e}^{z Q_{1}} \tag{2.18.4}
\end{equation*}
$$

$\underline{\text { Distinguishable Particles }}$

$$
\begin{equation*}
\mathcal{L}=\sum_{N=0}^{\infty} z^{N} Q_{N}=\sum_{N=0}^{\infty}\left(z Q_{1}\right)^{N}=\frac{1}{1-z Q_{1}} \quad \text { assuming } z Q_{1}<1 \text { for the series to converge. } \tag{2.18.5}
\end{equation*}
$$

Indistinguishable Particles
For indistinguishable particles we thus have $\ln \mathcal{L}=z Q_{1}$ and so,

$$
\begin{equation*}
-p V=\Phi=-k_{B} T \ln \mathcal{L}=-k_{B} T z Q_{1} \quad \Rightarrow \quad p=\frac{k_{B} T}{V} z Q_{1} \tag{2.18.6}
\end{equation*}
$$

Also

$$
\begin{equation*}
N=-\left(\frac{\partial \Phi}{\partial \mu}\right)_{T, V}=k_{B} T\left(\frac{\partial z}{\partial \mu}\right)_{T} Q_{1}=k_{B} T \beta z Q_{1}=z Q_{1} \tag{2.18.7}
\end{equation*}
$$

So, combining these last two results, we have,

$$
\begin{equation*}
p=\frac{N k_{B} T}{V} \quad \text { the ideal gas law, no matter what is } Q_{1} \tag{2.18.8}
\end{equation*}
$$

So, no matter what is the single particle Hamiltonian (i.e. no matter what is Q_{1}), indistinguishable non-interacting particles will always obey the ideal gas law.

Ideal Gas of Indistinguishable Particles

For a simple gas of point particles,

$$
\begin{equation*}
Q_{1}=\frac{1}{h^{3}} \int d^{3} p \int d^{3} r \mathrm{e}^{-\beta p^{2} / 2 m}=\left(2 \pi m k_{B} T\right)^{3 / 2} \frac{V}{h^{3}}=V f(T), \quad \text { with } f(T)=\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2} \tag{2.18.9}
\end{equation*}
$$

For a more complicated gas, for example where the particles might have internal degrees of freedom, Q_{1} will have this same form but with a different $f(T)$.

We have,

$$
\begin{equation*}
\mathcal{L}=\mathrm{e}^{z Q_{1}}=\mathrm{e}^{z V f(T)} \quad \Rightarrow \quad \ln \mathcal{L}=z V f(T) \tag{2.18.10}
\end{equation*}
$$

The grand potential is then

$$
\begin{equation*}
\Phi=-k_{B} T \ln \mathcal{L}=-k_{B} T z V f(T)=-p V \quad \Rightarrow \quad p=k_{B} T z f(T) \quad \text { recall, } z=\mathrm{e}^{\beta \mu} \tag{2.18.11}
\end{equation*}
$$

and

$$
\begin{equation*}
N=-\left(\frac{\partial \Phi}{\partial \mu}\right)_{T, V}=-\left(\frac{\partial \Phi}{\partial z}\right)_{T, V}\left(\frac{\partial z}{\partial \mu}\right)_{T}=k_{B} T V f(T) \beta \mathrm{e}^{\beta \mu}=z V f(T) \tag{2.18.12}
\end{equation*}
$$

Combining the above two results give,

$$
\begin{equation*}
\frac{p}{k_{B} T}=z f(T) \quad \text { and } \quad \frac{N}{V}=z f(T) \quad \Rightarrow \quad p V=N k_{B} T \tag{2.18.13}
\end{equation*}
$$

So we get the ideal gas law no matter what is $f(T)$, i.e. no matter what might be the internal degrees of freedom of the particles.

Also,

$$
\begin{align*}
E & =-\left(\frac{\partial \ln \mathcal{L}}{\partial \beta}\right)_{V, z}=k_{B} T^{2}\left(\frac{\partial \ln \mathcal{L}}{\partial T}\right)_{V, z}=k_{B} T^{2} z V \frac{d f}{d T} \quad \text { using } \ln \mathcal{L}=z V f(T) \tag{2.18.14}\\
& =k_{B} T^{2} N \frac{1}{f} \frac{d f}{d T}=k_{B} T^{2} N\left(\frac{\partial \ln f}{\partial T}\right) \quad \text { using } N=z V f(T) \tag{2.18.15}
\end{align*}
$$

and so,

$$
\begin{equation*}
C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V, N}=2 k_{B} T N\left(\frac{\partial \ln f}{\partial T}\right)+k_{B} T^{2} N\left(\frac{\partial^{2} \ln f}{\partial T^{2}}\right) \tag{2.18.16}
\end{equation*}
$$

If the single particle Hamiltonian has only harmonic degrees of freedom (for example \mathbf{p}, or harmonic internal degrees of freedom such as internal vibrations of a molecule), one has $f \propto T^{n}$ for some power n (for a simple point particle, where \mathbf{p} is the only harmonic degree of freedom, one has $n=3 / 2$ as in Eq. (2.18.9)). In this case,

$$
\begin{equation*}
\left(\frac{\partial \ln f}{\partial T}\right)=\left(\frac{\partial[n \ln T]}{\partial T}\right)=\frac{n}{T} \quad \Rightarrow \quad E=k_{B} T^{2} N\left(\frac{\partial n}{\partial T}\right)=n k_{B} T N \tag{2.18.17}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{V}=2 n k_{B} N+k_{B} T^{2} N\left(\frac{-n}{T^{2}}\right)=n k_{B} N \tag{2.18.18}
\end{equation*}
$$

The Helmholtz free energy is,

$$
\begin{align*}
A=\Phi+\mu N & =-k_{B} T z V f(T)+\left(k_{B} T \ln z\right)(z V f(T)) \quad \text { using } \mu=k_{B} T \ln z \text { and } N=z V f(T) \tag{2.18.19}\\
& =z V f(T) k_{B} T[\ln z-1]=N k_{B} T[\ln z-1] \tag{2.18.20}
\end{align*}
$$

and so,

$$
\begin{equation*}
A(T, V, N)=N k_{B} T\left[\ln \left(\frac{N}{V f(T)}\right)-1\right] \quad \text { where we used } N=z V f \Rightarrow z=\frac{N}{V f} \tag{2.18.21}
\end{equation*}
$$

This result agrees with a direct calculation from the canonical ensemble,

$$
\begin{align*}
& Q_{N}=\frac{\left[Q_{1}\right]^{N}}{N!}=\frac{V^{N} f^{N}}{N!} \Rightarrow A=-k_{B} T \ln Q_{N}=-k_{B} T \ln \left(\frac{V^{N} f^{N}}{N!}\right) \tag{2.18.22}\\
& A=-k_{B} T N \ln V f+k_{B} T(N \ln N-N)=-N k_{B} T+N k_{B} T \ln \left(\frac{N}{V f}\right)=N k_{B} T\left[\ln \left(\frac{N}{V f(T)}\right)-1\right] \tag{2.18.23}
\end{align*}
$$

And, lastly, the entropy is,

$$
\begin{equation*}
S=-\left(\frac{\partial A}{\partial T}\right)_{V, N}=N k_{B}\left[\ln \left(\frac{N}{V f(T)}\right)-1\right]-N k_{B} T \frac{d(\ln f)}{d T} \tag{2.18.24}
\end{equation*}
$$

Distinguishable Particles

This corresponds to a situation in which particles are localized, so that we can distinguish them by their spatial location.

Now we expect $Q_{1}=\phi(T)$ - it is not proportional to the volume V since the particles are localized. Then, $\mathcal{L}=\frac{1}{1-z Q_{1}}=\frac{1}{1-z \phi(T)} \quad$ note, if we had $Q_{1} \propto V$, then the series in Eq. (2.18.5) would not converge! (2.18.25) Then

$$
\begin{align*}
\Phi & =-k_{B} T \ln \mathcal{L} \tag{2.18.26}\\
N & =-\left(\frac{\partial \Phi}{\partial \mu}\right)_{T, V}=-\left(\frac{\partial z}{\partial \mu}\right)_{T}\left(\frac{\partial \Phi}{\partial z}\right)_{T, V}=-\beta \mathrm{e}^{\beta \mu}\left(-k_{B} T\right) \frac{1}{\mathcal{L}} \frac{\partial \mathcal{L}}{\partial z} \tag{2.18.27}\\
& =z(1-z \phi) \frac{\phi}{(1-z \phi)^{2}}=\frac{z \phi}{1-z \phi} \tag{2.18.28}\\
& \Rightarrow \quad(1-z \phi) N=z \phi \quad \Rightarrow \quad z \phi=\frac{N}{1+N}=\frac{1}{1+1 / N} \approx 1-\frac{1}{N} \quad \text { for } N \gg 1 \tag{2.18.29}
\end{align*}
$$

and

$$
\begin{align*}
E & =-\left(\frac{\partial \ln \mathcal{L}}{\partial \beta}\right)_{V, z}=k_{B} T^{2}\left(\frac{\partial \ln \mathcal{L}}{\partial T}\right)_{V, z}=k_{B} T^{2}(1-z \phi) \frac{z(d \phi / d T)}{(1-z \phi)^{2}} \tag{2.18.30}\\
& =\frac{k_{B} T^{2} z(d \phi / d T)}{1-z \phi}=k_{B} T^{2} N \frac{1}{\phi} \frac{d \phi}{d T}=k_{B} T^{2} N\left(\frac{\partial \ln \phi}{\partial T}\right) \tag{2.18.31}
\end{align*}
$$

and

$$
\begin{equation*}
A=\Phi+\mu N=-k_{B} T \ln \left(\frac{1}{1-z \phi}\right)+\left(k_{B} T \ln z\right) N=k_{B} T[\ln (1-z \phi)+N \ln z] \tag{2.18.32}
\end{equation*}
$$

Now use $1-z \phi \approx 1 / N$ and $z \approx 1 / \phi$ to get,

$$
\begin{equation*}
A=-k_{B} T N \ln \phi(T)+O(\ln N) \tag{2.18.33}
\end{equation*}
$$

