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Unit 2-6: Entropy of Mixing and the Gibbs Paradox

Consider two different gases (red gas and blue gas) at the same temperature and pressure, separated by a par-
tition. The total volume V , total number of particles N , and total energy E are all fixed to be constant.
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V = V1 + V2

N = N1 +N2

E = E1 + E2

 constant (2.6.1)

Since both gases are at the same T and p we have,

E1 =
3

2
N1kBT, V1 =

N1kBT

p
(2.6.2)

E2 =
3

2
N2kBT, V2 =

N2kBT

p
(2.6.3)

With the partition in place, the total entropy is initially,

Sinit = kB ln [Ω1(E1, V1, N1)Ω2(E2, V2, N1)] = S1(E1, V1, N1) + S2(E2, V2, N2) (2.6.4)

Now we remove the partition and let the two gases mix. The temperature T and the number of particles in each gas
N1 and N2 should not change ⇒ E1 and E2 remain constant. The only changes are V1 → V and V2 → V .

With the partition removed, when the system comes into equilibrium the final entropy is,

Sfinal(E, V,N1, N1) = kB ln [Ω1(E1, V,N1)Ω2(E2, V,N2)] = S1(E1, V,N1) + S2(E2, V,N2) (2.6.5)

The entropy of mixing is

∆S = Sfinal − Sinit (2.6.6)

If we use our result for the entropy of the ideal gas, computed from the microcanonical ensemble of the last section,
we get,

Sinit =
3
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(
4πm1E1

3N1

)3/2
]

+
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kBN2 + kBN2 ln

[
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(
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)3/2
]

(2.6.7)

and

Sfinal =
3

2
kBN1 + kBN1 ln

[
V
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(2.6.8)

We thus get

∆S = kBN1 ln

(
V

V1

)
+ kBN2 ln

(
V

V2

)
(2.6.9)

Now since V1 = N1kBT/p, V2 = N2kBT/p, and so V = V1 + V2 = (N1 +N2)kBT/p, this can be written as,

∆S = kBN1 ln

(
N1 +N2

N1

)
+ kBN2 ln

(
N1 +N2

N2

)
> 0 (2.6.10)

We expect ∆S > 0 since the entropy always increases when a constraint is removed.

When the red gas mixes with the blue gas we get purple gas! The process is irreversible – there is no thermodynamic
process that will separate the mixture back into separate volumes of red and blue gas. In irreversible processes, the
entropy always increases.
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Now consider what happens if the two gases on either side of the partition are both of the same type, say both are
red gas. Before the partition is removed Sinit is the same as in Eq. (2.6.7) except with m1 = m2 = m.

With the partition removed, the system is a single gas of N = N1 + N2 particles, with total energy E = E1 + E2,
confined to a volume V . The final entropy with the partition removed is then,

Sfinal = S(E, V,N) =
3

2
kBN + kBN ln

[
V

h3

(
4πmE

3N

)3/2
]

(2.6.11)

=
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kB(N1 +N2) + kB(N1 +N2) ln
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2
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]

(2.6.12)

where we used E/N = 3
2kBT . Similarly using E1/N1 = E1/N2 = 3

2kBT (since both sides were initially at the same
temperature T ), we can write the above as,

Sfinal =
3

2
kBN1 + kBN1 ln

[
V

h3

(
4πm

3

E1

N1

)3/2
]

+
3

2
kBN2 + kBN2 ln
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V

h3

(
4πm

3

E2
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(2.6.13)

= S(E1, V,N1) + S(E2, V,N2) (2.6.14)

We thus conclude that

S(E, V,N) = S(E1, V,N1) + S(E2, V,N2) (2.6.15)

The above result is equivalent to our earlier observation that the entropy, as we’ve computed in the microcanonical
ensemble so far, is not extensive. Rather than obeying the extensivity condition (i) λS(E, V,N) = S(λE, λV, λN),
we found that the entropy computed from the microcanonical ensemble obeyed (ii) λS(E, V,N) = S(λE, V, λN). If
we took our initial gases so that E1 = E2 = E/2 and N1 = N2 = N/2, then Eq. (2.6.15) is equivalent to (ii) with
λ = 1/2.

Comparing the above Eq. (2.6.13) with the previous Eq. (2.6.8), we see that Sfinal has exactly the same form when
both gases are the same as when they are different, except with m1 = m2 = m.

Hence we find the same entropy of mixing ∆S > 0 regardless of whether the two gases are the same or whether they
are different! But this should not be – when the gases are the same, removing the partition is a reversible process. We
can always reinsert the partition and return to a situation indistinguishable from the initial state. In such a reversible
process we should have ∆S = 0! This contradiction is known as the Gibbs paradox for the entropy of mixing.

The source of the problem lies in whether or not one should regard the particles of the gas as distinguishable. If we
can distinguish each and every particle of the gas from one another, then when we mix the two gases of the same
type, we do not really have a reversible process. After the partition is reinserted, we have not returned to the initial
state because we now have different particles on each side as compared to what was the case initially.

Think of each particle as being a different unique color and the point should be clear. If each particle is a different
color (i.e. the particles are distinguishable) it is no longer clear that the entropy should be extensive (or equivalently,
additive over subsystems). If we double the volume, energy, and number of particles, we have not just made a second
copy of the original system – this is because all the new particles must now come in new colors!

It was Gibbs who realized that to resolve this paradox of the mixing entropy, as well as to make the entropy computed
in the microcanonical ensemble extensive, it was necessary to regard the particles of a gas as being indistinguishable
from one another. This assumption was later confirmed by our quantum mechanical understanding of atoms and
molecules.


