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Unit 3-10: Pauli Paramagnetism of the Electron Gas

Pauli paramagnetism describes the magnetization of a degenerate ideal (non-interacting particles) Fermi gas of elec-
trons with an external magnetic field.

An electron has a half integer spin s = 1
2~σ, with σz = ±1. The spin gives rise to an intrinsic magnetic moment

µ = −µBσ, with µB =
|e|~
2mc

the Bohr magneton.

In an external magnetic field B = Bẑ, there is an interaction energy between the spin and the field, −µ ·B = µBσzB.
Assuming a model of non-interacting electrons (neither Coulomb interaction between the electron charges, nor an
interaction between their magnetic moments), the energy for an electron with a parallel (“up” with σz = +1) or
anti-parallel (“down, with σz = −1) spin is,

ε±(k) = ε(k)± µBB where ε(k) is the energy spectrum at B = 0 (3.10.1)

Since spin-up and spin-down electrons now have different energy spectra, we should treat them as two different
populations of particles, which can convert one into the other by flipping their spin. This implies that they will be in
equilibrium with each other when their chemical potentials are equal, i.e. when µ+ = µ−.

This will induce a net magnetization in the system, known as Pauli paramagnetism.

To see how this effect works, consider free electrons at T = 0.

|k|, σz = +1|k|, σz = −1 0

B = 0
ε−(k) ε+(k)

εF

filled states

When B = 0, then ε+(k) = ε−(k). In the sketch on the right, the right
hand side shows the energy spectrum ε+(k) of the spin-up electrons,
while the left hand side shows the energy spectrum ε−(k) of the spin-
down electrons. Since these spectra are equal when B = 0, the spin-
up electrons fill up states to the same Fermi energy µ = εF as do the
spin-down electrons. The shaded area shows the states ε ≤ εF that
are occupied. We thus have equal numbers of spin-up and spin-down
electrons, n+ = n−, and there is no net magnetization.
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When B is turned on, if there were no redistribution of the electron
spins, the situation wold look like in the sketch on the right. The spin-
up electrons just shift up in energy, while the spin-down electrons shift
down in energy. Clearly the system could then lower its total energy by
flipping spin-up electrons into spin-down electrons.
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When the system reaches its new equilibrium, the situation would look
like in the sketch on the right. As we had when B = 0, it must now
also be the case that the spin-up and spin-down populations of electrons
fill up to the same maximum energy µ(B). But to make that happen,
there must now be more spin-down electrons than there are of spin-up
electrons, n− > n+. This induces a net magnetization density,

M

V
= −µB(n+ − n−) > 0 (3.10.2)

Because M > 0, then M = M ẑ is parallel to the direction of B, and this is a paramagnetic effect.

Now we will do the calculation to quantify this effect.
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The calculation:

Let g(ε) be the density of states when B = Bẑ = 0. In this B = 0 case, the density of states for the spin-up electrons is
just half the total, i.e. g(ε)/2, while the density of states for the spin-down electrons is similarly g(ε)/2. When B > 0,
the energy of a spin-up electron shifts ε→ ε+ µBB, while the energy of a spin-down electron shifts to ε→ ε− µBB.

The density of states for spin-up (+) and for spin-down (−) electrons therefore become,

g+(ε+ µBB) =
1

2
g(ε) ⇒ g+(ε) =

1

2
g(ε− µBB) (3.10.3)

g−(ε− µBB) =
1

2
g(ε) ⇒ g−(ε) =

1

2
g(ε+ µBB) (3.10.4)

The density of spin-up and spin-down electrons is then,

n± =

∫ ∞
ε±min

dε g±(ε) f(ε, µ(B)) (3.10.5)

where ε±min = ±µBB is the lowest energy level of a spin-up (+) electron and a spin-down (−) electron, and where,

f(ε, µ(B)) ≡ 1

e(ε−µ(B))/kBT + 1
(3.10.6)

is the Fermi occupation function. Here µ(B) is the chemical potential, which might depend on the value of the external
magnetic field B. This chemical potential is the same for spin-up and spin-down electrons, since the two populations
are in equilibrium with one another. Please don’t be confused by the notation – µ(B) is the chemical potential, while
µB is the Bohr magneton!

We will consider only the case that the shift in energy due to the external magnetic field is small compared to εF ,

µBB � µ(B) ≈ εF (3.10.7)

First we will show that the shift in the chemical potential when one turns on the B is small, i.e.,

µ(B) ≈ µ(B = 0)
[
1 +O(µBB/εF )2

]
(3.10.8)

Since we will work in the µBB � εF limit, we will then be able to ignore this shift in µ due to the finite B and just
use µ(B = 0).

Then we will calculate the induced magnetization due to the population imbalance n+ − n− induced by turning on
B.

1) Shift in chemical potential with B

Consider the total density of electrons,

n = n+ + n− =

∞∫
µBB

dε g+(ε)f(ε, µ(B)) +

∞∫
−µBB

dε g−(ε)f(ε, µ(B)) (3.10.9)

=
1

2

∞∫
µBB

dε g(ε− µBB)f(ε, µ(B)) +
1

2

∞∫
−µBB

dε g(ε+ µBB)f(ε, µ(B)) (3.10.10)

In the first integral we will shift the integration variable to ε′ = ε − µBB; in the second integral we will shift the
integration variable to ε′ = ε+ µBB. Then, relabeling ε′ → ε, we get,

n =
1

2

∫ ∞
0

dε g(ε)
[
f(ε+ µBB,µ(B)) + f(ε− µBB,µ(B))

]
(3.10.11)
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Next we use the fact that f(ε, µ) depends only on ε− µ to write,

n =
1

2

∫ ∞
0

dε g(ε)
[
f(ε, µ(B)− µBB) + f(ε, µ(B) + µBB)

]
(3.10.12)

Now expand f(ε, µ) about µ(B) for small µBB,

n =
1

2

∫ ∞
0

g(ε)

[
f(ε, µ(B))−

(
∂f

∂µ

)
(µBB) +

1

2

(
∂2f

∂µ2

)
(µBB)2 + · · · (3.10.13)

+f(ε, µ(B)) +

(
∂f

∂µ

)
(µBB) +

1

2

(
∂2f

∂µ2

)
(µBB)2 + · · ·

]
(3.10.14)

where the derivatives above are evaluated at µ = µ(B). The terms linear in B cancel, and we are left with,

n =

∫ ∞
0

dε g(ε)

[
f(ε, µ(B)) +

1

2

(
∂2f

∂µ2

)
(µBB)2 + · · ·

]
(3.10.15)

If we ignored the small (µBB)2 term, then the above would be,

n =

∫ ∞
0

dε g(ε)f(ε, µ(B)) (3.10.16)

But this is just the same formula we use to compute n when B = 0! The magnetic field B appears nowhere in the
above expression, except via µ(B). Since the density of electrons n is fixed and cannot vary as B is turned on, we
would conclude from the above that µ(B) = µ(0) is independent of B.

But that conclusion depends on our having ignored the (µBB)2 term. Hence we expect that the shift in µ(B) should
be proportional to this term, i.e.,

µ(B)− µ(0) ≈ (µBB)2

εF
(3.10.17)

where the factor 1/εF appears on dimensional grounds.

To see that this is so more explicitly, lets include the (µBB)2 term and continue to calculate,

n =

∫ ∞
0

dε g(ε)

[
f(ε, µ(B)) +

1

2

(
∂2f

∂µ2

)
(µBB)2

]
(3.10.18)

Since we believe the shift in µ(B) is small, let’s write µ(B) = µ(0) + δµ, and then expand the first term in δµ,

n =

∫ ∞
0

dε g(ε)

[
f(ε, µ(0) + δµ) +

1

2

(
∂2f

∂µ2

)
(µBB)2

]
(3.10.19)

=

∫ ∞
0

dε g(ε)f(ε, µ(0)) +

∫ ∞
0

dε g(ε)

(
∂f

∂µ

)∣∣∣∣
µ=µ(0)

δµ +
1

2

∫ ∞
0

dε g(ε)

(
∂2f

∂µ2

)∣∣∣∣
µ=µ(B)

(µBB)2 (3.10.20)

The first term is just the density n when B = 0, and since this stays fixed we then have,

0 =

∫ ∞
0

dε g(ε)

(
∂f

∂µ

)∣∣∣∣
µ=µ(0)

δµ +
1

2

∫ ∞
0

dε g(ε)

(
∂2f

∂µ2

)∣∣∣∣
µ=µ(B)

(µBB)2 (3.10.21)

So we then have,

δµ =

−1

2

∫ ∞
0

dε g(ε)

(
∂2f

∂µ2

)∣∣∣∣
µ=µ(B)

(µBB)2∫ ∞
0

dε g(ε)

(
∂f

∂µ

)∣∣∣∣
µ=µ(0)

(3.10.22)

To evaluate the above, first note that the numerator is already explicitly of O(µBB)2, so we can evaluate the derivative
at µ = µ(0) rather than µ = µ(B) — using µ = µ(B) would just introduce higher order terms in µBB.
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Now we consider the derivatives of f(ε, µ) that appear in the integrands of the numerator and denominator.
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On the left we plot f(ε, µ), −µ[df/dε], and µ2[d2f/dε2] vs ε/µ, for the case
where µ/kBT = 100 (recall, for typical metals, µ/kBT ≈ 104). As µ/kBT
increases, the features sharpen up.

In the T → 0 limit, where µ/kBT → ∞, the occupation function f(ε, µ)
becomes a sharp step function at ε = µ, and µ(0) = εF . Since f(ε, µ)
depends only on ε − µ, we have that (∂f/∂µ) = −(∂f/∂ε). We therefore
have as T → 0,(

∂f

∂µ

)
= −

(
∂f

∂ε

)
= δ(ε− µ) = δ(ε− εF ) (3.10.23)

(
∂2f

∂µ2

)
=

(
∂2f

∂ε2

)
= −∂δ(ε− µ)

∂ε
= −δ′(ε− µ) = −δ′(ε− εF )

(3.10.24)

Therefore, as T → 0, we have for the integrals that appear in the denom-
inator and in the numerator of Eq. (3.10.22),∫ ∞

0

dε g(ε)

(
∂f

∂µ

)∣∣∣∣
µ=µ(0)

= g(εF ) (3.10.25)

∫ ∞
0

dε g(ε)

(
∂2f

∂µ2

)∣∣∣∣
µ=µ(0)

= g′(εF ) (3.10.26)

In the last equation we used the fact that
∫
dx g(x)δ′(x) = −

∫
dx g′(x)δ(x), as obtained by an integration by parts.

Thus, as T → 0, Eq. (3.10.22) gives,

δµ = µ(B)− µ(0) = −1

2

g′(εF )

g(εF )
(µBB)2 (3.10.27)

For free electrons with g(ε) = C
√
ε, and g′(ε) = C/2

√
ε, we then get,

µ(B)− µ(0) = µ(B)− εF = − (µBB)2

4εF
⇒ µ(B) = εF

[
1−

(
µBB

2εF

)2
]

(3.10.28)

2) Magnetization density

Now we compute the magnetization density induced by turning on the magnetic field B.

M

V
= −µB

[
n+ − n−

]
= µB

[
n− − n+

]
= µB

∫
dε f(ε, µ)

[
g−(ε)− g+(ε)

]
(3.10.29)

= µB

∫
dε f(ε, µ)

[1

2
g(ε+ µBB)− 1

2
g(ε− µBB)

]
(3.10.30)

=
1

2
µB

∫
dε g(ε)

[
f(ε, µ+ µBB)− f(ε, µ− µBB)

]
just as we did in our calculation for µ(B) (3.10.31)
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Now expand f(ε, µ± µBB) ≈ f(ε, µ)±
(
∂f

∂µ

)
(µBB), and we get to lowest order,

M

V
=

1

2
µB

∫
dε g(ε)

[
2

(
∂f

∂µ

)
(µBB)

]
= µ2

BB

∫
dε g(ε)

(
−∂f
∂ε

)
(3.10.32)

Here the leading terms in the expansion of f(ε, µ ± µBB) cancel, and if we had kept the expansion to second order,
those second order terms would also cancel. We also used (∂f/∂µ) = −(∂f∂ε).

Now as T → 0, we have as before that −(∂f/∂ε)→ δ(ε− εF ). So in the T = 0 limit we get,

M

V
= µ2

BB g(εF ) (3.10.33)

If we wanted the magnetization at finite temperatures, we could use the Sommerfeld expansion to evaluate the integral
in Eq. (3.10.32). We would find that the corrections to the T = 0 result are of order O(kBT/εF )2.

The T = 0 Pauli paramagnetic susceptibility is then, χP = lim
B→0

∂(M/V )

∂B

χP = µ2
B g(εF ) since χP > 0, this is a paramagnetic effect; M aligns in the same direction as B (3.10.34)

For free electrons, we have g(εF ) =
3

2

n

εF
, and so,

M

V
= µ2

BB
3

2

n

εF
, χP = µ2

B

3

2

n

εF
free electrons (3.10.35)

Classical paramagnetic susceptibility for spin 1/2 electrons

It is interesting to compare our result of χP for the degenerate Fermi gas with what we would get classically for spin
1/2 electrons. Since the single particle Hamiltonian is H(1)(σz) = µBBσz, then in the classical limit, the probability
that an electron spin would have σz = ±1 would be,

P(σz) =
e−βµBBσz

eβµBB + e−βµBB
(3.10.36)

The average magnetization of a single electron would then be,

M

N
= −µB〈σz〉 = −µB

[
(1)P(1) + (−1)P(−1)

]
= −µB

[
(+1)e−βµBB + (−1)eβµBB

eβµBB + e−βµBB

]
(3.10.37)

= µB tanh(βµBB) (3.10.38)

The magnetization density would then be,

M

V
=
N

V

M

N
= −nµB〈σz〉 = nµB tanh(βµBB) where n = N/V is the electron density (3.10.39)

Then the classical magnetic susceptibility is,

χ =
d(M/V )

dB
(3.10.40)
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At low T → 0 (β → ∞), tanh(βµBB) → 1, M/V → µBn, so all spins are aligned. Compare that to the quantum
case where from Eq. (3.10.35) we get, M/V = (3/2)(n/εF )µ2

BB. The quantum result for M/V is smaller than the
classical result by a factor,

3

2

µBB

εF
� 1 (3.10.41)

At high T (β → 0), tanh(βµBB)→ βµBB, so,

M

V
=
µ2
BBn

kBT
⇒ χ =

µ2
Bn

kBT
∼ 1

T
(3.10.42)

Compare that to the quantum case. At room temperature we still have T � TF , and so the susceptibility is essentially
the same at at T = 0. From Eq. (3.10.35) we have,

χP =
3µ2

Bn

2εF
independent of T (3.10.43)

The quantum χP is then smaller than the classical χ by a factor,

3

2

(
kBT

εF

)
=

3

2

(
T

TF

)
� 1 (3.10.44)

A General Observation

If you review our calculations of quantities for the degenerate Fermi gas, such as µ(T ), cV , and χP , you should notice
that these all depend on the density of states at the Fermi energy, g(εF ), and its derivatives at εF . Thus g(εF ) is a
key parameter that determines many features of the degenerate Fermi gas. You might wonder why?

The reason is that, for a degenerate Fermi gas, kBT � εF . And so at finite temperature, it is only the electrons within
kBT of the Fermi energy that can do anything. Electron states at energies much below εF − kBT are all occupied,
and cannot become doubly occupied (Pauli exclusion principle), so an electron here would have to absorb an energy
much larger than kBT to get excited to an unoccupied state above εF . That is not likely. So it is only the electrons
within kBT of εF that can absorb thermal energy and get excited into the unoccupied states above εF . How many
such electrons, per unit volume, are there? There are g(εF )kBT .


