Unit 3-2: Quantum Many Particle Systems - Bosons vs Fermions

A system of N identical (i.e., indistinguishable) particles is described by a wavefunction,

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, s_{1}, \mathbf{r}_{2}, s_{2}, \ldots, \mathbf{r}_{N}, s_{N}\right) \equiv \psi(1,2, \ldots, N) \quad \text { where } \mathbf{r}_{i} \text { and } s_{i} \text { are the position and spin of particle } i \tag{3.2.1}
\end{equation*}
$$

Identical particles means that the probability density $|\psi|^{2}$ should be symmetric under the interchange of any pair of coordinates,

$$
\begin{equation*}
|\psi(1, \ldots, i, \ldots, j \ldots, N)|^{2}=|\psi(1, \ldots, j \ldots, i, \ldots, N)|^{2} \tag{3.2.2}
\end{equation*}
$$

There are two possible symmetries for ψ.

1) ψ is symmetric under pair interchanges, $\psi(1, \ldots, i, \ldots, j, \ldots, N)=\psi(1, \ldots, j \ldots, i, \ldots, N)$
2) ψ is antisymmetric under pair interchanges, $\psi(1, \ldots, i, \ldots, j, \ldots, N)=-\psi(1, \ldots, j \ldots, i, \ldots, N)$

Case (1) is called Bose-Einstein (BE) statistics. Particle that obey such statistics are called bosons.
Case (2) is called Fermi-Dirac (FD) statistics. Particles that obey such statistics are called fermions.
For a general permutation \mathbb{P} that interchanges any number of pairs of particles,
For BE statistics, $\mathbb{P} \psi=\psi$.
For FD statistics, $\mathbb{P} \psi=(-1)^{P} \psi$, where P is the number of pairwise interchanges needed to make the permutation \mathbb{P}. For FD, when P is even, then $\mathbb{P} \psi=+\psi$. When P is odd, then $\mathbb{P} \psi=-\psi$.

BE statistics are for particles with integer spin, $s=0,1,2, \ldots$.
FD statistics are for particles with half integer spin, $s=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$
Now consider non-interacting particles. The N-particle Hamiltonian is the sum of single particle Hamiltonians,

$$
\begin{equation*}
\mathcal{H}(1,2,3, \ldots, N)=\mathcal{H}^{(1)}(1)+\mathcal{H}^{(1)}(2)+\mathcal{H}^{(1)}(3)+\cdots+\mathcal{H}^{(1)}(N) \tag{3.2.3}
\end{equation*}
$$

and we can write the N-particle wavefunction as a product of single particle wavefunctions,

$$
\begin{equation*}
\psi(1,2, \ldots, N)=\phi_{i_{1}}(1) \phi_{i_{2}}(2) \cdots \phi_{i_{N}}(N) \tag{3.2.4}
\end{equation*}
$$

where ϕ_{i} is an eigenstate of the single particle $\mathcal{H}^{(1)}$ with energy ϵ_{i}.
But while the above ψ will solve Schrodinger's equation, $\mathcal{H} \psi=E \psi$, with $E=\epsilon_{i_{1}}+\epsilon_{i_{2}}+\cdots+\epsilon_{i_{N}}$, this ψ does not have the proper symmetry required for BE or FD statistics. We can construct an appropriately symmetrized wavefunction as follows.

For BE,

$$
\begin{equation*}
\psi_{B E}=\frac{1}{\sqrt{N_{P}}} \sum_{\mathbb{P}} \mathbb{P} \psi \tag{3.2.5}
\end{equation*}
$$

For FD,

$$
\begin{equation*}
\psi_{F D}=\frac{1}{\sqrt{N_{P}}} \sum_{\mathbb{P}}(-1)^{P} \mathbb{P} \psi \tag{3.2.6}
\end{equation*}
$$

where the sum is over all permutations \mathbb{P} of the N particles, N_{P} is the number of possible permutations of the N particles $\left(N_{P}=N!\right)$, and ψ is the product of single particle wavefunctions as in Eq. (3.2.4).

You can verify that, with the above definitions, $\mathbb{P} \psi_{B E}=\psi_{B E}$, and $\mathbb{P} \psi_{F D}=(-1)^{P} \psi_{F D}$, for any permutation \mathbb{P}, as desired.

For a ψ described by Eq. (3.2.4), or its symmetrized versions $\psi_{B E}$ and $\psi_{F D}$, the total energy is,

$$
\begin{equation*}
E=\epsilon_{i_{1}}+\epsilon_{i_{2}}+\cdots+\epsilon_{i_{N}}=\sum_{j} n_{j} \epsilon_{j} \tag{3.2.7}
\end{equation*}
$$

where the last sum is over all single particle eigenstates ϕ_{j}, n_{j} is the number of particles in single particle eigenstate ϕ_{j}, and $\sum_{j} n_{j}=N$.

For BE statistics, $n_{j}=0,1,2, \ldots$ is any integer.
For FD statistics, the only allowed possibilities are $n_{j}=0$ or 1 .
This is because if we had two particles in any given single particle state, say ϕ_{1}, then the wavefunction ψ would look like,

$$
\begin{equation*}
\psi(1,2,3, \ldots, N)=\phi_{1}(1) \phi_{1}(2) \phi_{i_{3}}(3) \cdots \phi_{i_{N}}(N) \tag{3.2.8}
\end{equation*}
$$

But then when we construct $\psi_{F D}=\frac{1}{\sqrt{N_{P}}} \sum_{\mathbb{P}}(-1)^{P} \mathbb{P} \psi$, then for every term in the sum $\phi_{1}(i) \phi_{1}(j) \phi_{i_{3}}(k) \cdots \phi_{i_{N}}(\ell)$ there must also be a term $(-1) \phi_{1}(j) \phi_{1}(i) \phi_{i_{3}}(k) \cdots \phi_{i_{N}}(\ell)$ from interchanging $i \leftrightarrow j$, so these will cancel pair by pair and we find that $\psi_{F D}=0$.

The Pauli Exclusion Principle: No two fermions can occupy the same single particle state; alternatively one could say, no two fermions can have the same "quantum numbers."

There is no similar restriction for bosons.

Occupation numbers: The specification of any non-interacting N particle quantum state can be given by the occupation numbers $\left\{n_{i}\right\}$, that give how many particles are in each single particle eigenstate ϕ_{i}. Each set of $\left\{n_{i}\right\}$ corresponds to one N-particle state.

