Unit 3-7: Black Body Radiation

Cavity radiation:

A volume V at fixed temperature T absorbs and emits electromagnetic radiation. What are the characteristics of this equilibrium radiation at fixed T?

Electromagnetic waves with wavevector \mathbf{k} have frequency $\omega = c|\mathbf{k}|$, with two transverse polarizations for each \mathbf{k} . (there is no longitudinal polarization for EM waves).

Regard each mode of electromagnetic wave as an oscillator. If excited to energy level n, the energy in the oscillator of wavevector \mathbf{k} is $\epsilon_{\mathbf{k}} = n\hbar\omega = n\hbar c |\mathbf{k}| \Rightarrow n$ photons in this mode. The average energy in this mode is therefore,

$$\langle \epsilon_{\mathbf{k}} \rangle = \hbar \omega \langle n \rangle = \frac{\hbar \omega}{\mathrm{e}^{\beta \hbar \omega} - 1} \tag{3.7.1}$$

(we ignore the ground state energy $\frac{1}{2}\hbar\omega$ as it is a temperature independent constant.)

For a volume $V = L^3$, periodic boundary conditions give the allowed wavevectors as $\mathbf{k} = \left(\frac{2\pi}{L}\right) \mathbf{n}$, with $\mathbf{n} = (n_x, n_y, n_z)$ integer.

As we did for phonons, we can now compute the density of states $g(\omega)$, per unit volume, for photons with frequency less than or equal to ω . The calculation is exactly the same as we did for phonons in Notes 3-6, except that (i) we replace the speed of sound c_s by the speed of light in the vacuum c, and (ii) for photons there are only two transverse polarization for each \mathbf{k} , whereas for phonons there were three polarizations (two transverse and one longitudinal). So the density of states for photons is just 2/3 the density of states for phonons, with $c_s \rightarrow c$. From Eq. (3.6.11) we therefore have,

$$g(\omega) = \frac{1}{\pi^2} \frac{\omega^2}{c^3}$$
(3.7.2)

Classically, each electromagnetic mode of oscillation would be like a classical harmonic oscillator, and so by the equipartition theorem it would contribute $k_B T$ to the average energy. The classical prediction for the average energy per volume at frequency ω would then be,

$$u^{\text{class}}(\omega) = g(\omega)k_B T = \frac{1}{\pi^2} \frac{\omega^2}{c^3} k_B T$$
(3.7.3)

or in terms of the wavelength $\lambda = 2\pi c/\omega$,

$$u^{\text{class}}(\lambda) = u^{\text{class}}(\omega) \left| \frac{d\omega}{d\lambda} \right| = \frac{8\pi}{\lambda^4} k_B T \tag{3.7.4}$$

Thus the amount of energy in the high frequency $\omega \to \infty$, or in the low wavelengths $\lambda \to 0$, grows without bound. This was contrary to experimental observation. Moreover, since (unlike for phonons in a solid) there is no upper bound on the possible frequency ω (or lower bound on the wavelength λ), so when one computes the total energy in all modes $\int_0^\infty d\omega \, u^{\text{class}}(\omega) = \int_0^\infty d\lambda \, u^{\text{class}}(\lambda)$, this will diverge, and the specific heat will also diverge. This was known as the *ultraviolet catastrophe*, because the divergence comes from the behavior at large ω or equivalently at small λ .

The resolution of this paradox came by understanding that we must quantize the oscillations of the electromagnetic waves. In this case, The average energy per volume $u(\omega)$ at frequency ω is,

$$u(\omega) = g(\omega)\hbar\omega\langle n(\omega)\rangle = g(\omega)\left(\frac{\hbar\omega}{e^{\beta\hbar\omega} - 1}\right)$$
(3.7.5)

This follows since $\hbar\omega$ is the energy of a single photon of frequency ω , $\langle n(\omega) \rangle$ is the average number of photons in such a mode at ω , and $g(\omega)$ is the number of modes per unit energy per unit volume at ω .

Substituting in for $g(\omega)$ then gives,

$$u(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3 \left(e^{\beta\hbar\omega} - 1\right)}$$
(3.7.6)

This is Planck's formula for the Black Body Spectrum. Fitting experimental data to this form is how Planck first measured the constant $h = 2\pi\hbar!$

Note, for low frequencies such that $\beta\hbar\omega \ll 1 \Rightarrow \hbar\omega \ll k_B T$, the Planck formula of Eq. (3.7.6) reduces to the classical result in Eq. (3.7.3). But for high frequencies, such that $\hbar\omega > k_B T$, the Planck distribution reaches a peak and then decreases exponentially as ω increases. This is what avoids the ultraviolet catastrophe. It is Planck's constant \hbar that determines the crossover from classical behavior at low $\omega \ll k_B T/\hbar$, to quantum behavior at high $\omega \gg k_B T/\hbar$.

Total energy density:

The total energy density is then,

$$\frac{E}{V} = \int_0^\infty d\omega \, u(\omega) = \frac{\hbar}{\pi^2 c^3} \int_0^\infty d\omega \, \frac{\omega^3}{\mathrm{e}^{\beta\hbar\omega} - 1} = \frac{\hbar}{\pi^2 c^3} \frac{1}{(\beta\hbar)^4} \int_0^\infty dx \, \frac{x^3}{e^x - 1} \qquad \text{with } x = \beta\hbar\omega \tag{3.7.7}$$

The integral over x just give the constant $\pi^4/15$, so we have,

$$\frac{E}{V} = \left(\frac{\pi^2 k_B^4}{15\,\hbar^3 c^3}\right) T^4 \tag{3.7.8}$$

Note: A big difference between photons and phonons is that for phonons there is a largest possible $|\mathbf{k}| = k_D$ set by the spacing between the ions in the lattice. But for photons there is no such maximum $|\mathbf{k}|$.

Energy flux from a cavity:

Now consider the flux of energy exiting from a hole in a cavity. We have for the flux \mathcal{F} ,

Black Body Temp T

$$\mathcal{F} = (\text{energy density})(\text{speed})(\text{projection of velocity out the hole})$$
$$= \left(\frac{E}{V}\right) c \langle \cos \theta \rangle$$
(3.7.9)

We have,

$$\langle \cos \theta \rangle = \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^{\pi/2} d\theta \, \sin \theta \, \cos \theta = \frac{2\pi}{4\pi} \left(\frac{\sin^2 \theta}{2} \right)_0^{\pi/2} = \frac{1}{4} \quad (3.7.10)$$

Note, the integral on θ goes only to $\pi/2$ since, when $\theta > \pi/2$, the particle is traveling *away* from the hole.

So,

$$\mathcal{F} = \left(\frac{E}{V}\right)\frac{c}{4} = \frac{\pi^2 k_B^4}{60\,\hbar^3 c^2}\,T^4 = \sigma\,T^4 \qquad \text{Stefan-Boltzmann Law} \quad (3.7.11)$$
$$\sigma = \frac{\pi^2 k_B^4}{60\,\hbar^3 c^2} = 5.7 \times 10^{-8}\,W/m^2 K^4 \text{ is Stefan's constant.}$$

Pressure of a photon gas:

We have,

$$\frac{p}{k_B T} = \frac{1}{V} \ln \mathcal{L} = -\frac{1}{V} \sum_s \sum_{\mathbf{k}} \ln \left(1 - e^{-\beta \epsilon_{\mathbf{k}}} \right) \qquad \text{BE partition function with } \mu = 0 \tag{3.7.12}$$

$$= -\frac{2}{V} \sum_{\mathbf{k}} \ln\left(1 - \mathrm{e}^{-\beta\epsilon_{\mathbf{k}}}\right) = -\int_{0}^{\infty} d\omega \, g(\omega) \ln\left(1 - \mathrm{e}^{-\beta\hbar\omega}\right)$$
(3.7.13)

$$= -\frac{1}{\pi^2 c^3} \int_0^\infty d\omega \,\omega^2 \ln\left(1 - \mathrm{e}^{-\beta\hbar\omega}\right) \tag{3.7.14}$$

We integrate by parts,

$$\frac{p}{k_B T} = -\frac{1}{\pi^2 c^3} \left[\frac{\omega^3}{3} \ln\left(1 - \mathrm{e}^{-\beta\hbar\omega}\right) \right]_0^\infty + \frac{1}{\pi^2 c^3} \int_0^\infty d\omega \,\frac{\omega^3}{3} \,\frac{\beta\hbar\mathrm{e}^{-\beta\hbar\omega}}{1 - \mathrm{e}^{-\beta\hbar\omega}} \tag{3.7.15}$$

The boundary term vanishes at both its limits: (i) as $\omega \to \infty$, $\ln(1 - e^{-\beta\hbar\omega}) \to -e^{-\beta\hbar\omega}$, so $\omega^3 \ln(1 - e^{-\beta\hbar\omega}) \to -\omega^3 e^{-\beta\hbar\omega} \to 0$, and (ii) as $\omega \to 0$, $\ln(1 - e^{-\beta\hbar\omega}) \to \ln(\beta\hbar\omega)$ and so $\omega^3 \ln(\beta\hbar\omega) \to 0$. We are left with,

$$\frac{p}{k_B T} = \frac{\beta \hbar}{3\pi^2 c^3} \int_0^\infty d\omega \, \left(\frac{\omega^3}{\mathrm{e}^{\beta \hbar \omega} - 1}\right) \tag{3.7.16}$$

Comparing to the calculation of E/V in Eq. (3.7.7) we have,

$$\frac{p}{k_B T} = \frac{\beta}{3} \frac{E}{V} = \frac{1}{3k_B T} \frac{E}{V} \qquad \Rightarrow \qquad p = \frac{1}{3} \frac{E}{V} \qquad \text{pressure of a photon gas} \qquad (3.7.17)$$

We can compare this to a non-relativistic ideal gas of identical particles, which has,

$$pV = Nk_BT, \quad E = \frac{3}{2}Nk_BT, \quad \Rightarrow \quad p = \frac{2}{3}\frac{E}{V} \quad \text{for non-relativistic particles}$$
(3.7.18)

The difference is because the photons are relativistic particles, and as you showed in Discussion Question 3, the energy of such particles is related to temperature by $E = 3Nk_BT$. The ideal gas law still holds, and so one gets $\frac{1}{3}E = pV$.

The last two examples of phonons in a solid and black body radiation were problems involving bosons with a linear excitation spectrum, $\epsilon_{\mathbf{k}} = \hbar \omega_{\mathbf{k}} = \hbar c |\mathbf{k}|$, and zero chemical potential, $\mu = 0$.

Next we want to consider the problem of an ideal gas of non-interacting physical particles, bosons *or* fermions, with an ordinary quadratic non-relativisitic excitation spectrum, $\epsilon_{\mathbf{k}} = \hbar^2 k^2/2m$, and with a finite chemical potential, $\mu \neq 0$.