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Unit 4-5: The Maxwell Construction and the Gibbs Free Energy Density

Here we will continue to explore some of the consequences of the mean-field solution for the Ising model. We will
work with the Landau form of the free energy,

f(m,T ) = f0 + am2 + bm4 with a = a0(T − Tc) (4.5.1)

From h =

(
∂f

∂m

)
T

we have,

h = 2am+ 4bm3 (4.5.2)

which we plot in the sketch below on the right.

m

h
T > Tc

T = Tc

T < Tc

0 m0

−m0

m

f(m,T) − f0
T > Tc

T = Tc

T < Tc

0

m0−m0

For T < Tc we know that the above h(m) curve cannot be valid for −m0 ≤ m ≤ +m0. This is the coexistence region
where we should have h = 0. For T < Tc the correct h(m) curve should look like the sketch below on the left, where
we replace the non-monotonic part of the curve (the dashed line) with a horizontal segment at h = 0.
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Such a “correction”, based on our physical understanding, is called the “Maxwell construction” (originally done in
connection with Van der Waals theory of the liquid to gas phase transition).

If we use the “corrected” h(m) for T < Tc to compute f(m,T ) =
∫
dmh(m), and adjust the constant of integration

so that f(m0) − f0 remains the same as before, then instead of the double-well form we saw previously, we now get
as in the sketch above on the right, where the non-monotonic part of the curve (the dashed line) is replaced with a
flat horizontal segment.

Note: this can be thought of as if we took the original, double-well curve and replaced it by it convex envelop. The
original double-well curve cannot be physically correct since f(m,T ) must be convex in m. The “corrected” curve is
convex as desired.

Using the “corrected” form for f(m,T ) we can then compute the Gibbs free energy density (note, here we compute
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g(h, T ) at finite h, not just h = 0 as we did before),

g(h, T ) = min
m

[f(m,T )− hm] (4.5.3)

Below on the left we plot f(m,T )− f0 −mh vs m, at several values of h, for T < Tc, denoting the minimum of each
curve with a dot. The location of this minimum on the horizontal axis at m∗ gives the value of the magnetization m
in the equilibrium state at the given h, while the location f(m∗, T ) − f0 − hm∗ on the vertical axis gives the value
of g(h, T ) − f0. Note, unlike the “uncorrected” double-well curve which would have two local minima and one local
maximum at each h, here each curve has a unique minima and no local maximum (except for the case of h = 0 which
has an extended flat minimum for the interval −m0 ≤ m ≤ +m0).

We see that as h increases from negative values to positive, the minimum m∗ starts at a negative value, increases
slowly (becomes less negative), and then, as one crosses h = 0, jumps discontinuously to a positive value, and then
increases slowly. This discontinuous jump in m∗ is just the discontinuity in the magnetization, jumping from −m0 to
+m0 as one increases the magnetic field at fixed T to cross the first order coexistence line in the H − T plane.
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In the figure above to the right we plot the value of the minimum on the vertical axis, g(h, T )−f0 = f(m∗, T )−f0−hm∗
vs h, to show the Gibbs free energy density. We see that g(h, T ) is continuous, but with a finite cusp at h = 0. Since
m = −(∂g/∂h)T , we see that the slope of the curve g(h, T ) vs h approaches −(−m0) = m0 as h → 0− from below,
while the slope approaches −(m0) as h → 0+ from above. This is the explanation for the cusp. The discontinuity
in the slope of g(h, T ) at h = 0 is thus 2m0. As T → T−c from below, and so m0 → 0, the magnitude of this cusp
decreases and then vanishes at Tc.

Solving Eq. (4.5.2) numerically for the equilibrium magnetization m at a fixed magnetic field h, we plot m vs h for
both T ≤ Tc and T > Tc in the figure below to the left. Using that value of m in g(h, T ) = f(m,T ) − hm, we plot
the Gibbs free energy density g(h, T )− f0 vs h in the figure below to the right, again for both T ≤ Tc and T > Tc.
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We see that m increases monotonically as h increases. For T < Tc, m takes a discontinuous jump from −m0 to
+m0 as one crosses h = 0. As T → T−c , we have the spontaneous magnetization m0 → 0, and this discontinuity
vanishes. Exactly at T = Tc we have |m| ∼ |h|1/δ vanishes singularly as |h| → 0. Since the magnetic susceptibility
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is χ = limh→0(∂m/∂h)T , we have χ ∼ limh→0 |h|1/δ−1 at Tc, and since 1/δ = 1/3 < 1 in mean-field theory, we see
that χ diverges at Tc, as we saw in the previous Notes 4-4. For T > Tc, m varies continuously and analytically, with
a finite slope (and hence a finite χ), as the magnetic field crosses h = 0. As T → T+

c from above, the slope of m vs h
at h = 0 (this is just χ) steepens and diverges.

The corresponding behavior of g(h, T ) is as follows. For T < Tc, g(h, T ) has a finite cusp at h = 0, with a jump 2m0

in the slope. This is a reflection of the jump in the spontaneous magnetization m0 as one crosses the coexistence line.
The magnitude of the cusp decreases, and vanishes, as T → T−c and m0 → 0. At Tc one can solve easily for g(h, T ).
Since a = a0(T − Tc) = 0 as T = Tc, Eq. (4.5.2) becomes simply,

h = 4bm3 ⇒ m =

(
h

4b

)1/3

⇒ g(h, T )−f0 = bm4−hm = b

(
h

4b

)4/3

−h
(
h

4b

)1/3

= −3b

(
h

4b

)4/3

(4.5.4)

So now m = −(∂g/∂h)T ∼ h4/3−1 ∼ h1/3, which is continuous as one crosses h = 0. The magnetic susceptibility,
χ = (∂m/∂h)T = −(∂2g/∂h2)T ∼ h4/3−2 ∼ h−2/3, however, diverges.

For T > Tc one can also easily solve for g(h, T ). Above Tc there is no Maxwell construction, and since m is small as we
approach Tc, to lowest order we can drop the bm4 term and write f(m,T ) = f0+am2. The equilibrium magnetization
is then determined by (∂f/∂m)T = h = 2am. We then have,

h = 2am ⇒ m =
h

2a
⇒ g(h, T )− f0 = am2 − hm = a

(
h

2a

)2

− h
(
h

2a

)
= −h

2

4a
=

−h2

4a0(T − Tc)
(4.5.5)

Thus, unlike T < Tc where g(h, T ) has a cusp at h = 0, for T > Tc we see that g(h, T ) is smooth and parabolic at
h = 0. The curvature at h = 0 is just the magnetic susceptibility, χ = −(∂2g/∂h2)T = 1/[2a0(T −Tc)], which diverges
as T → T+

c from above.

Summary

For T < Tc, the Helmholtz free energy density has a double-welled form; for h = 0 the two wells are of equal depth at
±m0, while for |h| > 0 one well is the global minima while the other is a local minima. When one makes the Maxwell
construction, these two minima are connected by a straight line so that f(m,T ) becomes a convex function of m.
For T > Tc, f(m,T ) has a single minimum at m ∝ h. The curvature of f(m,T ) as h → 0 is the inverse magnetic
susceptibility χ−1, which vanishes as T → T+

c .

For T < Tc, the Gibbs free energy density is a concave function with a sharp cusp at h = 0, with a jump in slope
equal to 2m0. As T → T−c from below, the magnitude of this cusp vanishes as m0 → 0. For T > Tc, g(h, T ) has a
parabolic maximum at h = 0. The curvature of g(h, T ) at h = 0 is just the magnetic susceptibility χ, which diverges
as T → T+

c from above.


