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Unit 4-6: The Liquid-Gas Phase Transition

The Lattice Gas Model

The Ising model is not just a model for a ferromagnetic phase transition. It is also a model for the liquid-gas phase
transition! One way to see this is the lattice gas model.

Consider a periodic lattice of N sites i. On each site we define a variable ni which can take only the values ni = 0, 1.

ni =

{
1 site i occupied by a particle
0 site i unoccupied

(4.6.1)

The Hamiltonian for the lattice gas is,

H = −U
∑
〈ij〉

ninj − µ
∑
i

ni (4.6.2)

The first term is, for U > 0, an attractive interaction between particles on nearest neighbor sites. The second term is
the chemical potential term −µ∑i ni = −µNpart of the grand canonical ensemble, with Npart the number of particles
in the system.

We can now map the lattice gas model onto the Ising model. Let

si = 2ni − 1 = ±1, ni =
si + 1

2
(4.6.3)

Then

H = −U
∑
〈ij〉

(
si + 1

2

)(
sj + 1

2

)
− µ

∑
i

(
si + 1

2

)
(4.6.4)

= −U
∑
〈ij〉

(
sisj

4
+
si
2

+
sj
2

+
1

4

)
− µ

2

∑
i

si −
µN

2
(4.6.5)

= −U
4

∑
〈ij〉

sisj −
(
Uz

2
+
µ

2

)∑
i

si −
(
Uz

8
+
µ

2

)
N (4.6.6)

We thus wind up with an Ising model with coupling J = U/4 and magnetic field h = (zU + µ)/2. The last term in
the Hamiltonian above is a constant that we can ignore. Note, N is the number of lattice sites, not the number of
particles

∑
i ni.
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We know that the Ising model has a first order coexistence line at
0 ≤ T ≤ Tc for h = 0, that ends at the critical end point T = Tc,
h = 0. The lattice gas model thus has a first order coexistence line
at 0 ≤ T ≤ Tc for µ = −zU (so that h = 0), that ends at a critical
end point at T = Tc, µ = −zU . In the mean-field solution for the
Ising model we had kBTc = zJ/2, so in the mean-field solution for
the lattice gas model we have kBTc = zU/8. When one crosses the
coexistence line by increasing h in the Ising model there is a jump
in the magnetization from −m0 to +m0. Hence, as one crosses

the coexistence line by increasing the chemical potential µ in the lattice gas, there will be a jump in the density of
particles n = 1

N 〈
∑
i ni〉 = 〈ni〉 = (〈si〉+ 1)/2, from n− = (−m0 + 1)/2 to n+ = (+m0 + 1)/2, i.e. we go from a less

dense to a more dense system, with a discontinuous jump in the density ∆n = n+ − n− = m0. As T → Tc along
the coexistence line, the jump in density vanishes as ∆n ∼ (Tc − T )β . Along the coexistence line the average particle
density is n̄ = (n+ +n−)/2 = 1/2. In terms of the Landau theory of phase transitions, n− n̄ is the “order parameter.”

Thus the lattice gas displays a liquid to gas phase transition, where there is a discontinuous jump in the density of
particles as one crosses the coexistence line. The coexistence line ends at a critical point. For T > Tc there is no
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distinction between the liquid and gas phases; the particle density is now continuous as µ varies. The nature of the
liquid-gas critical end point is the same as in the Ising model, i.e. the critical exponents, such as β, are all the same.
In the usual liquid-gas transition (water to vapor) one usually writes the phase diagram in the pressure – temperature
plane. For the lattice gas, where the lattice of sites on which particles may sit is fixed, the total system volume is
fixed. There is thus no analog of pressure p. It is therefore the chemical potential µ that plays the role of the “ordering
field.”

Landau Theory of the Liquid-Gas Transition

Another way to see that the liquid-gas transition can be described in terms of an Ising model is by using Landau
theory.

The liquid-gas transition can be described by a phase diagram in either the p− T or v − T planes, where the specific
volume, v = V/N , is just the inverse of the particle density n = N/V . For the liquid-gas transition, the first order
transition or coexistence line, where liquid can coexist in chemical equilibrium with its vapor, is given by a curve in
the p − T plane, which we will denote as p0(T ). The curve ends at a critical point C at T = Tc and pc = p0(Tc).
On the larger pressure side of the coexistence curve, the specific volume of the liquid phase, vl(T ), increases to the
critical value vc as T → Tc; on the smaller pressure side of the coexistence curve, the specific volume of the gas phase,
vg(T ), decreases to the same vc as T → Tc. The jump in the specific volume as one crosses the coexistence curve,
∆v = vg− vl, vanishes at Tc. In the v−T plane, the coexistence curve becomes the boundary of a coexistence region.
If we try to cool down into the coexistence region, the system will phase separate into coexisting domains of gas and
liquid – there is no spatially homogeneous equilibrium state within the coexistence region.

The phase diagrams for the liquid-gas transition in the p− T and v − T plane are as shown in the sketches below on
the left. The corresponding phase diagrams for the Ising model, in the h−T and m−T planes are shown on the right.
We see the qualitative correspondences h↔ p and m↔ m. However, there would seem to be a difference between the
two models. The phase diagram for the Ising model has an up-down symmetry, i.e. the magnetization on the lower
side of the coexistence curve −m0 is just the negative of the magnetization on the upper side of the coexistence curve
+m0, and the coexistence line is given by h = −0. In the liquid-gas phase diagram, there is no similar symmetry
between vg and vl along the coexistence curve, and the coexistence curve is some function p0(T ).
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However we can see the equivalence if we transform to new coordinates to describe the liquid-gas transition. We will
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analytically extend the curve p0(T ) to temperatures T > Tc, and we will define,

v0(T ) =
vl(T ) + vg(T )

2
for T < Tc, and v0(T ) ≡ v(T, p0(T )) for T > Tc. (4.6.7)

Below Tc, v0(T ) is the average of the liquid and gas specific volumes on either side of the coexistence curve. Above
Tc, v0(T ) is the specific volume of the single phase along the analytically extended curve p0(T ). We have v0(T )→ vc
as T → Tc from either above or below.

We now define the new coordinates,

δp ≡ p− p0(T ), δv ≡ v − v0(T ) (4.6.8)

The coexistence curve is now given by the condition δp = 0. In terms of δv, the specific volumes of the liquid and gas
on either side of the coexistence curve are given by,

δvg = vg − v0 = vg −
vl + vg

2
=
vg − vl

2
, δvl = vl − v0 = vl −

vl + vg
2

=
vl − vg

2
(4.6.9)

Thus we have δvg = −δvl, and so, when expressed in terms of δv, we have recovered the symmetry found in the Ising
model.

We thus regard δv as our order parameter and δp as our ordering field, and the analogy to the Ising model becomes
exact. Just like for the Ising model, our order parameter is a scalar quantity.

Near the critical point, we can make a linear expansion and write,

p0(T ) ≈ pc +

(
∂p0
∂T

)
T=Tc

(T − Tc) = pc + c1(T − Tc) (4.6.10)

v0(T ) ≈ vc +

(
∂v0
∂T

)
T=Tc

(T − Tc) = vc + c2(T − Tc) (4.6.11)

with c1, c2 > 0.

Following Landau, near the critical point C we can expand the Helmholtz free energy density for small δv and write,

f(δv, T ) = f0(T ) + aδv2 + bδv4 with a = a0(T − Tc) and b constant. (4.6.12)

There can be no δv nor δv3 term because the minima of f(δv, T ) must be symmetric about δv = 0. Note, however,
that if we expressed f in terms of the original v, substituting into the above δv = v − v0, then there would be linear
and cubic terms in v, reflecting the lack of symmetry in the original phase diagram.

The equation of state is then given by,

δp = −
(
∂f

∂δv

)
T

= −2aδv − 4bδv3 (4.6.13)

The Gibbs free energy density is determined by minimizing,

g(δp, T ) = min
δv

[f(δv, T ) + δpδv] (4.6.14)

with the minimizing value of δv giving the equilibrium value of δv at the given δp.

The above Helmholtz free energy, equation of state, and Gibbs free energy are in complete analogy with the Ising
model, with δv ↔ m and δp ↔ −h; the minus sign is because for the system of particles g = f + pv, while for the
spins g = f − hm. What is crucial is that the order parameter is a scalar quantity and f has inversion symmetry
δv ↔ −δv. The critical exponents of the liquid-gas transition must therefore be the same as those of the Ising model.
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We can then immediately write down the corresponding results for the critical behavior of the liquid-gas transition.
With t = (T − Tc)/Tc, along the coexistence curve, with p = p0(T ) as T varies, we have for T ≤ Tc,

δv ∼ ±|t|β along the coexistence curve p = p0(T ), with β = 1/2 in mean-field theory (4.6.15)

In mean-field theory, we have,

δv = ±
√
a0|T − Tc|

2b
and so vg,l = ±

√
a0|T − Tc|

2b
+ v0(T ) = ±

√
a0|T − Tc|

2b
+ vc + c2(T − Tc) (4.6.16)

On the critical isotherm T = Tc we have

δp ∼ −δvδ on the critical isotherm T = Tc, with δ = 3 in mean-field theory. (4.6.17)

Thus, along the critical isotherm we have δv = −sgn(δp)|δp|1/δ, where sgn(x) = +1 for x > 0 and −1 for x < 0.

The isothermal compressibility is,

κT = − 1

V

(
∂V

∂p

)
T,N

= −1

v

(
∂v

∂p

)
T

= −1

v

(
∂δv

∂δp

)
T

(4.6.18)

Along the critical isotherm T = Tc, where δp = p− p0(Tc) = p− pc,

κT =
sgn(p)

v

∂|δp|1/δ
∂δp

∼ |δp|1/δ−1 in mean field theory, 1/δ − 1 = −2/3, so κT ∼ |p− pc|−2/3. (4.6.19)

We see that κT diverges as we pass through the critical point C along the critical isotherm.

We can also ask how κT behaves as we pass through the critical point C along the critical isobar p = pc. We can find
this within mean-field theory. Along the critical isobar p = pc we have δp = pc − p0(T ) = −c1(T − Tc). The equation
of state Eq. (4.6.13) then gives,

δp = −c1(T − Tc) = −2a0(T − Tc)δv − 4bδv3 ⇒ (T − Tc) =
4bδv3

c1 − 2a0δv
(4.6.20)

As T → Tc along the critical isobar, δv → 0, so close to Tc we can ignore the δv term in the denominator of the above
to get,

(T − Tc) =
4b

c1
δv3 ⇒ δv = sgn(T − Tc)

( c1
4b
|T − Tc|

)1/3
along the critical isobar (4.6.21)

Now, also from the equation of state, we have,(
∂δp

∂δv

)
T

= −2a0(T − Tc)− 12bδv2 ⇒ κT = −1

v

1

(∂δp/∂δv)T
=

1

v(2a0(T − Tc) + 12bδv2)
(4.6.22)

So on the critical isobar, using δv from Eq. (4.6.21), we get,

κT =
1

v(2a0(T − Tc) + 12b
(
c1
4b

)2/3 |T − Tc|2/3 =
1

v|T − Tc|2/3
[
sgn(T − Tc)2a0|T − Tc|1/3 + 12b

(
c1
4b

)2/3] (4.6.23)

As T → Tc the term (T − Tc)1/3, in the square brackets of the denominator, becomes negligible, and so we have,

κT ∼ |T − Tc|−2/3 along the critical isobar. (4.6.24)

Thus, in mean-field theory, the isothermal compressibility diverges with with the same exponent −2/3 whether one
approaches the critical point along the critical isotherm T = Tc, or along the critical isobar p = pc.

Finally we can ask how κT behaves as one passes through the critical point C along the coexistence curve, p = p0(T ).
Since we have the identifications, δv ↔ m and δp ↔ −h, the isothermal compressibility κT = (−1/v)(∂δv/∂δp) is
analogous to the magnetic susceptibility χ = ∂m/∂h. Thus, along the coexistence line we have,

κT ∼ |T − Tc|−γ with γ = 1 in mean-field theory. (4.6.25)
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We also have the amplitude ratio,

lim
T→Tc

κ+T
κ−T

= 2 (4.6.26)

where κ+T is for T > Tc, while κ−T is for T < Tc.
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The Clausius-Clapeyron Relation

Along the coexistence line the gas and the liquid phases are in chemical equilibrium and can coexist. The condition
for such chemical equilibrium is that the chemical potentials of the two phases must be equal,

µl(T, p) = µg(T, p) (4.6.27)

This gives one constraint on the two thermodynamic variables T and p, and so determines the location of the
coexistence line p0(T ) in the p− T plane.

We now use the Gibbs-Duhem relation to write for the liquid and the gas phases,

dµl = −sldT + vldp, dµg = −sgdT + vgdp (4.6.28)

where s = S/N is the entropy per particle.

Along the coexistence curve we have dµl = dµg, since µl = µg. This gives,

−sldT + vldp = −sgdT + vgdp ⇒ dp0
dT

=
sg − sl
vg − vl

=
∆s

∆v
≡ L

T∆v
(4.6.29)

where dp0/dT is the slope of the coexistence curve, and L ≡ T∆s is the latent heat of the transition. The latent heat
is the energy that must be absorbed to turn one particle of liquid into one particle of gas. We see this as follows. For
a system with fixed total V and fixed total N , then the change in total energy is,

dE = TdS ⇒ dE

N
= Tds ⇒ ∆E = T∆s = L (4.6.30)

where ∆E is the energy to change to convert one particle liquid to gas.

We thus have the Clausius-Clapeyron relation which relates the slope of the coexistence curve to the discontinuities
in density and entropy upon crossing the coexistence curve,

dp0
dT

=
∆s

∆v
=

L

T∆v
Clausius-Clapeyron relation (4.6.31)

Since dp0/dT is in general finite, and we know ∆v is finite, but with ∆v → 0 as T → Tc, then similarly it must be
that ∆s is finite upon crossing the phase boundary, but with ∆s→ 0 as T → Tc.

⇒ L is finite along the phase boundary, but with L→ 0 as T → Tc. (4.6.32)
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A phase transition with finite L is called a first order phase transition. A phase transition with L = 0 is called a
continuous, or second order, phase transition. The transition from liquid to gas along the coexistence curve is therefore
a first order phase transition. The critical end point C of the coexistence line is a continuous phase transition.

The Gibbs Phase Rule

The coexistence line in the p − T plane, which can also be termed the phase boundary between the liquid and gas
phases, is the locus of points where the two phases can coexist in equilibrium. We can now ask, can three phases
coexist together?

+ solid ••% ←
critical
endpoint

← triple point
gas

1-

For water, such a three phase coexistence occurs at the triple point where
liquid, gas, and solid phases meet. At such a three phase coexistence we
must have,

µs(T, p) = µl(T, p) = µg(T, p) (4.6.33)

where µs is the chemical potential of the solid phase. We therefore have
two equations of constraint, µs = µl and µl = µg, on two thermodynamic
variables p and T . The locus of solutions is therefore an isolated point,
called the triple point.

Can four phases coexist together? That would require,

µ1(T, p) = µ2(T, p) = µ3(T, p) = µ4(T, p) (4.6.34)

This is three constraints for two thermodynamic variable. The solution is in general over specified and so there is no
solution.

One cannot have four (or more) phases coexisting together unless there are additional thermodynamic variables besides
p and T .

For example, suppose one has a multi-component system of r species of particles, where ciα, i = 1, 2, . . . , r is the
fraction of constituent i in the thermodynamic phase α. We have

∑r
i=1 ciα = 1. Suppose there are s coexisting

phases.

Then the thermodynamic degrees of freedom are p, T, {ciα}, so there are 2 + rs degrees of freedom. The constraints
are,

r∑
i=1

ciα = 1 and µiα = µi,α+1 for i = 1 to r and α = 1 to s− 1 (4.6.35)

where µiα is the chemical potential of species i in phase α. The first condition on the {ciα} gives s constraints, one
for each phase. The second condition on the µiα gives r(s − 1) constraints, for the r different species and the s − 1
relations among the chemical potentials for each species. There is thus a total of s+ r(s− 1) constraints.

The number of “free” variables is therefore (2 + rs)− (s+ r(s− 1)) = 2 + r− s. We must have 2 + r− s ≥ 0 for there

to be a solution, or s ≤ r + 2 .

The maximum number of coexisting phases for an r-component system is r + 2. This is the Gibbs phase rule.


