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Unit 4-8: Fluctuations and the Ginzburg Criterion

We have discussed the mean-field solutions to the Ising model, in which the critical exponents do not depend on the
system dimensionality. We have shown that the mean-field calculation gives the exact answer for an infinite range
Ising model, however we find it does not give the correct answer for the 1D Ising model, for which there is no finite
temperature phase transition. By comparison with the exact Onsager solution in 2D, and numerical calculations in
3D, we know that the mean-field critical exponents do not give the correct result in 2D or 3D. So what has gone
wrong with the mean-field solution?

Early in our discussion of phase transitions we said that we must be in the thermodynamic limit, with N →∞ degrees
of freedom, to have a singular phase transition. But mean-field theory is essentially a theory with only one degree of
freedom – the order parameter. The singular behavior in the mean-field theory comes when we “fix” the mean-field
solution using the Maxwell construction. But there is no true consideration of the many degrees of freedom which
give fluctuations around the average value of the order parameter m. It is these fluctuations that are responsible for
the failure of mean-field theory at lower dimensions.

For the Ising model we had for the magnetic susceptibility, χ = lim
h→0

[
∂m

∂h

]
→∞ at Tc. Now,

m = −
(
∂g

∂h

)
T

⇒ χ =

(
∂m

∂h

)
T,h→0

= −
(
∂2g

∂h2

)
T,h→0

=
kBT

N

(
∂2 lnZ

∂h2

)
T,h→0

=
kBT

N

[
1

Z

∂2Z

∂h2
−
(

1

Z

∂Z

∂h

)2
]
h→0

(4.8.1)

With H = −J
∑
〈ij〉 sisj just the spin interaction part, we can write,

Z =
∑
{si}

e−βH+βhM ⇒ ∂Z

∂h
=
∑
{si}

e−βH+βhM βM and
∂2Z

∂h2
=
∑
{si}

e−βH+βhM (βM)2 (4.8.2)

We therefore have,

χ =
kBT

N
β2
[
〈M2〉 − 〈M〉2

]
=

1

kBT

〈M2〉 − 〈M〉2

N
(4.8.3)

or, with m = M/N , we have,

χ =
N

kBT

[
〈m2〉 − 〈m〉2

]
(4.8.4)

The divergence of χ at Tc therefore would seem to be related to a divergence in the fluctuations in the magnetization.

For T 6= Tc, χ is finite in the thermodynamic limit as N →∞. Eq. (4.8.4) then implies that 〈m2〉 − 〈m〉2 ∼ 1

N
, or,

√
〈m2〉 − 〈m〉2 ∼ 1√

N
→ 0 as N →∞. (4.8.5)
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We can understand this 1/
√
N dependence as follows.

Imagine we subdivide our total system into N0 subsystems. If each subsystem
is sufficiently large, we can expect the subsystems will be behaving indepen-
dently of one another. The measured magnetizations m(i) in each subsystem
(i) would then be a set of N0 independent identically distributed random vari-
ables. If the total system average is the average of these m(i), then the variance
of m is the variance of the m(i) divided by the number of terms N0 entering
into the average m. The standard deviation of m is then,√

〈m2〉 − 〈m〉2 ∼ 1√
N0

(4.8.6)
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To see this, we can review:

〈m〉 =

〈
1

N0

N0∑
i=1

m(i)

〉
=

1

N0

N0∑
i=1

〈m(i)〉 = 〈m(i)〉 since all the m(i) are identically distributed. (4.8.7)

〈m2〉 =

〈(
1

N0

N0∑
i=1

m(i)

) 1

N0

N0∑
j=1

m(j)

〉 =
1

N2
0

N0∑
i=1

N0∑
j=1

〈m(i)m(j)〉 (4.8.8)

=
1

N2
0

N0∑
i=1

〈[m(i)]2〉+
1

N2
0

∑
i6=j

〈m(i)〉〈m(j)〉 since the m(i) are independent. (4.8.9)

=
1

N0
〈[m(i)]2〉+

N0(N0 − 1)

N2
0

〈m(i)〉2 since the m(i) are identically distributed. (4.8.10)

=
1

N0
〈[m(i)]2〉+

(
1− 1

N0

)
〈m(i)〉2 (4.8.11)

So,

〈m2〉 − 〈m〉2 =
1

N0
〈[m(i)]2〉+

(
1− 1

N0

)
〈m(i)〉2 − 〈m(i)〉2 (4.8.12)

=
〈[m(i)]2〉 − 〈m(i)〉2

N0
∼ 1

N0
⇒

√
〈m2〉 − 〈m〉2 ∼ 1√

N0

(4.8.13)

Now, as long as the influence of the subsystem at position r is no longer felt at a finite distance ξ away, one can choose
the size of each subsystem to be ξd, with d the system dimensionality. So N0 = N/ξd, and we conclude,

√
〈m2〉 − 〈m〉2 ∼

√
ξd

N
∼ 1√

N
(4.8.14)

When this is the situation, the system is said to be self averaging.

But for T = Tc, we have χ → ∞ as N → ∞. So at Tc,
√
〈m2〉 − 〈m〉2 does not vanish as quickly as 1/

√
N , and the

above argument about independent subsystems cannot apply.

This means that the length scale ξ, that describes how far the system is correlated in space, must diverge as T → Tc.

For T 6= Tc, the state of the system m(r) at position r has no effect on the sate of the system at r + r0, if r0 is
sufficiently large, i.e. |r0| � ξ. But for T = Tc, the state of the system at r influences the state of the system
throughout its entire volume, since ξ →∞.

ξ is called the correlation length. ξ diverges at a continuous phase transition. When ξ = ∞ we cannot think of the
system as a collection of independent subsystems. A thermal fluctuation in m(r) away from its average value m0 will
be felt throughout the entire system. Thus it is crucial to consider fluctuations of the order parameter when trying
to compute behavior at such a transition.

Landau-Ginzburg Theory

We have already seen Landau theory in the context of mean-field theory. In Landau theory one defines an order
parameter, then expands the Helmholtz free energy as a power series in the order parameter, keeping only the lowest
order terms, and using only terms consistent with the symmetry of the system. For the Ising model the order
parameter is the magnetization density m, and the Landau free energy density is,

f(m,T ) = f0(T ) + am2 + bm4 with a = a0(T − Tc) (4.8.15)
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The Gibbs free energy density is then given by,

g(h, T ) = min
m

[f(m,T )− hm] (4.8.16)

where h is the ordering field conjugate to the order parameter m. The value of m for which the above is minimized
gives the equilibrium value of m at the given h.

Now we want to go beyond this mean-field version of Landau theory, to include fluctuations in m away from its average
value. This is called the Landau-Ginzburg approach. We will assume that the configurations we should consider can
be written in terms of small, spatially varying, fluctuations away from the mean field m0,

m(r) = m0 + δm(r) (4.8.17)

We then construct a free energy functional F [m(r)] that tells us the weight of the configuration m(r) in the statistical
ensemble,

F [m(r)] =

∫
ddr

[
f0 + am2 + bm4 + c|∇m|2

]
(4.8.18)

The integral is over the d-dimensional space of the system, and the new term in ∇m gives the additional cost in
energy to have a configuration with a spatially varying m(r). The m(r) that minimizes F is the constant mean-field
solution, m0 = ±

√
−a/2b for T < Tc, and m0 = 0 for T > Tc.

The goal is now to construct the partition function,

Z =

∫
D[δm(r)] e−βF [m(r)] (4.8.19)

where the notation D[δm(r)] means we are doing a functional integral over all possible functions δm(r). In this way
we can explore the effects that small fluctuations have on the mean-field solution.

We start by substituting m = m0 + δm into the free energy functional of Eq. (4.8.18), and expand to O(δm2),

F [m(r)] =

∫
ddr

[
f0 + am2

0 + 2am0δm+ aδm2 + bm4
0 + 4bm3

0δm+ 6bm2
0δm

2 + c|∇δm|2
]

(4.8.20)

The integral over the constant terms, f0 + am2
0 + bm4

0, give the mean field free energy F0.

The linear terms (2am0 + 4bm3
0)δ m vanish because m2

0 = −a/2b minimizes F .

The remaining quadratic terms are,

δF [δm(r)] =

∫
ddr

[(
a+ 6bm2

0

)
δm2 + c|∇δm|2

]
(4.8.21)

The integral is over the volume Ld of the system. For convenience, let ã = a+ 6bm2
0.

To specify the fluctuations δm(r), we can express them in terms of Fourier transforms. With periodic boundary
conditions, the allowed wavevectors q satisfy qµ = 2πnµ/L, with nµ integer. We have,

δm(r) =
1

Ld/2

∑
q

eiq·r δmq, δmq =
1

Ld/2

∫
ddr e−iq·rδm(r) (4.8.22)

Then,

δF =
1

Ld/2
1

Ld/2

∑
q

∑
q′

[ã− cq · q′] δmqδmq′

∫
ddr ei(q+q′)·r (4.8.23)

The last integral gives Ldδ(q + q′). We then have,

δF =
∑
q

[
ã+ cq2

]
δmqδm−q (4.8.24)
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Correlation Function

To average over fluctuations, we should compute the partition function averaged over all δm(r). With,

Z =

∫
D[m(r)] e−βF [m(r)] = e−βF0

∫
D[δm(r)] e−βδF [δm(r)] = e−βF0δZ (4.8.25)

the Gibbs free energy at h = 0 is then, G(h = 0, T ) = −kBT lnZ.

Now lets transform variables of integration from {m(r)} to {mq}. Our Fourier transforms were defined so that the
Jacobian of this transformation is unity. We have,

δZ =

(∏
q

∫
dδmq

)
e−βδF [δmq] (4.8.26)

Note that while δm(r) is a real valued function, δmq = δm1q + iδm2q is complex valued. Since δm(r) is real, we must
have δm∗q = δm−q. So δmq and δm−q are not independent. When we integrate over the δmq we should therefore
integrate over real values of δm1q and δm2q, but restrict q to qz > 0 so as not to double count δmq and δm−q. We
thus have,

δZ =

( ∏
q s.t.qz>0

∫ ∞
−∞

dδm1q

∫ ∞
−∞

dδm2q

)
e−βδF [δm1q+iδm2q] (4.8.27)

We use,

δF =
∑
q

(ã+ cq2)δmqδm−q =
∑
q

(ã+ cq2)(δm2
1q + δm2

2q) = 2
∑

q s.t.qz>0

(ã+ cq2)(δm2
1q + δm2

2q) (4.8.28)

where we multiply by 2 since we restrict the last sum to qz > 0, and there is an equal contribution from terms q and
−q.

Now use the fact that the exponential of a sum is equal to the product of exponentials, to write,

δZ =
∏

q s.t.qz>0

[∫ ∞
−∞

dδm1q

∫ ∞
−∞

dδm2q e−2β(ã+cq
2)(δm2

1q+δm
2
2q)

]
(4.8.29)

We can now ask, how big is the fluctuation δmq on average?

〈δmqδm−q〉 = 〈δm2
1q + δm2

2q〉 (4.8.30)

=

∫ ∞
−∞

dδm1q

∫ ∞
−∞

dδm2q e−2β(ã+cq
2)(δm2

1q+δm
2
2q) (δm2

1q + δm2
2q)∫ ∞

−∞
dδm1q

∫ ∞
−∞

dδm2q e−2β(ã+cq
2)(δm2

1q+δm
2
2q)

(4.8.31)

= 〈m2
1q〉+ 〈m2

2q〉 =
1

4β(ã+ cq2)
+

1

4β(ã+ cq2)
=

kBT

2(ã+ cq2)
(4.8.32)

We can now compute the spatial correlation function,

〈δm(r)δm(0)〉 =
1

Ld/2
1

Ld/2

∑
q

∑
q′

eiq·r〈δmqδmq′〉 (4.8.33)

Because δF involves only δmqδm−q = δm2
1q + δm2

2q, then 〈δmqδmq′〉 = 0 unless q′ = −q. We then have,

〈δm(r)δm(0)〉 =
1

Ld

∑
q

eiq·r〈δmqδm−q〉 =
1

Ld

∑
q

eiq·r
kBT

2(ã+ cq2)
(4.8.34)
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Take the L→∞ limit, where
∑
q

→ 1

(∆q)d

∫
ddq =

(
L

2π

)d ∫
ddq, and we get,

〈δm(r)δm(0)〉 =
1

(2π)d

∫ ∞
−∞
ddq eiq·r

kBT

2(ã+ cq2)
∼ e−r/ξ

rd−2
Ornstein-Zernicke form (4.8.35)

where ξ =

√
c

ã
is the correlation length. ξ gives the length scale over which fluctuations δm(r) decay.

This result for ξ comes from the integral having its poles at |q| = ±i
√
ã/c.

For T > Tc, ã = a+ 6bm2
0 = a = a0(T − Tc), since m0 = 0. This then gives,

ξ+ =

√
c

ã
=

√
c/a0√
T − Tc

∼ 1

|t|ν
with ν = 1/2 (4.8.36)

For T < Tc, ã = a+ 6bm2
0 = a− 6b

( a
2b

)
= −2a = 2a0(Tc − T ). This give,

ξ− =

√
c

ã
∼
√
c/2a0√
Tc − T

∼ 1

|t|ν
with ν = 1/2 (4.8.37)

Note, the above gives the amplitude ration ξ+/ξ− =
√

2 as T → Tc.

We see that as T → Tc the correlation length ξ diverges. Since fluctuations propagate out a distance ξ →∞, one can
never divide the system up into independent boxes on any finite length scale. This is why

√
〈m2〉 − 〈m〉2 does not

vanish as 1/
√
N at T = Tc. This tells us that fluctuations can be important at the transition!

The Ginzburg Criterion

Now we will compute the contribution of the fluctuations to the total Helmholtz free energy.

δF =
∑
q

(ã+ cq2)δmqδm−q = 2
∑

q s.t.qz>0

(ã+ cq2)(δm2
1q + δm2

2q) (4.8.38)

δZ =
∏

q s.t.qz>0

[∫ ∞
−∞

dδm1q

∫ ∞
−∞

dδm2q e−2β(ã+cq
2)(δm2

1q+δm
2
2q)

]
(4.8.39)

=
∏

q s.t.qz>0

[
2π

4β(ã+ cq2)

]1/2 [
2π

4β(ã+ cq2)

]1/2
(4.8.40)

where the first factor comes from the integration over δm1q, and the second factor comes from the integration over
δm2q.

δZ =
∏

q s.t.qz>0

[
πkBT

2(ã+ cq2)

]
(4.8.41)

The contribution to the Gibbs free energy is then,

δG = −kBT ln δZ = −kBT
∑

q s.t.qz>0

ln

[
πkBT

2(ã+ cq2)

]
= −kBT

2

∑
q

ln

[
πkBT

2(ã+ cq2)

]
(4.8.42)

where in the last expression we some over all q rather than just those with qz > 0, and to compensate for that we
multiply by 1/2.
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We can now, for L→∞, approximate the sum by an integral to get,

δG = −kBT
2

Ld

(2π)d

∫
ddq ln

[
πkBT

2(ã+ cq2)

]
(4.8.43)

And the contribution of this to the specific heat per unit volume, δc, will then be,

δc = − T

Ld

(
∂2δG

∂T 2

)
(4.8.44)

Consider T > Tc so that ã = a0(T − Tc) (the result will be similar for T < Tc where ã = 2a0(Tc − T )), We have,

1

Ld

(
∂δG

∂T

)
= −kB

2

1

(2π)d

∫
ddq ln

[
πkBT

2(ã+ cq2)

]
− kBT

2

1

(2π)d

∫
ddq

[
1

T
− a0
ã+ cq2

]
(4.8.45)

where the second piece of the last term comes from the T dependence of ã = a0(T − Tc).

Then,

1

Ld

(
∂2δG

∂T 2

)
= −kB

2

1

(2π)d

∫
ddq

[
1

T
− a0
ã+ cq2

]
+
kB
2

1

(2π)d

∫
ddq

a0
ã+ cq2

− kBT

2

1

(2π)d

∫
ddq

a20
(ã+ cq2)2

(4.8.46)

So,

δC =
kB
2

1

(2π)d

∫
ddq

[
1− 2Ta0

ã+ cq2
+

T 2a20
(ã+ cq2)2

]
(4.8.47)

The first term of “1” gives the classical 1
2kB per harmonic degree of freedom. The second two terms arise from the

T -dependence of a(T ) = a0(T − Tc) in δF .

To see how the integrals behave as T → Tc, we have,

I1 =

∫
ddq

a0
a0t+ cq2

where t = T − Tc. (4.8.48)

Let q2 = tq′
2
, so that,

I1 = td/2
∫
ddq′

a0

a0t+ ctq′2
= t

d
2−1

∫
ddq′ a0

a0 + cq′2
(4.8.49)

The integral is just some number, so we conclude,

I1 ∼ t
d
2−1 = t

d−2
2 ∼ ξ2−d since ξ ∼ t−1/2 (4.8.50)

Similarly,

I2 =

∫
ddq

a20
(a0t+ cq2)2

∼ t d
2−2 = t

d−4
2 ∼ ξ4−d (4.8.51)

The second integral I2 is the more singular one, since it involves a higher power of ξ.

For mean-field theory to be valid, as T → Tc, we want the correction δc to be small compared to the mean-field value
cMF .

Recall, in mean-field theory, cMF is finite at Tc, while, from the above, the most singular contribution from the

fluctuations gives δc ∼ t d−4
2 .

δc will diverge as T → Tc whenever d < 4. We therefore conclude,

d > 4 ⇒ fluctuations are negligible, δc → 0 as T → Tc, and so mean-field theory will give the correct critical
exponents.
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d < 4 ⇒ fluctuations give singular corrections to the mean-field results; mean-field theory breaks down. The
Renormalization Group approach gives the way to compute the correct critical exponents, including the effect of
fluctuations.

dc = 4 is called the upper critical dimension. The value of dc can vary with the symmetry of the order parameter.
For spherically symmetric n-component spin models, including the Ising model, dc = 4.

The condition that determines the value of dc, as in the above calculation, is called the Ginzburg criterion.

There is also a lower critical dimension, which depends on the number of components of the spin n. For d < the
lower critical dimension, there is no phase transition at finite temperature. For the Ising model, the lower critical
dimension is d = 2.


