Plasmon

Although we argued by screening that e^{--e} mteractions are less myortait than one might mavily expect, nevertheless the Coulomb interaction between electors does gie rise to physically untresty efforts.

One such effect is the plasmon - which is a longetuilmot charge density oscillation.

Sinjole explanation: consider the gas of elections as a reid charged body of mass $m N=m, m$ where N i the total muter of elections. If we dajlave the elections a distance d with respect to the wis, we will nate a senfere charge the sinfoces of the system as shown belour.
$+\sigma=\frac{\text { med }}{2}$

=elections

$$
=\text { ions }
$$

Surface charge σ creates electric field mside

$$
\vec{E}=4 \pi \sigma \hat{x}=4 \pi \mathrm{med} \hat{x}
$$

Nevitonis equation of motion for the electrons it the

$$
\begin{aligned}
m N d & =-e N E=-4 \pi M e^{2} d N \\
\ddot{d} & =-\frac{4 \pi M e^{2}}{m} d
\end{aligned}
$$

\rightarrow harmonic oscillation at frequency $\omega_{p}=\sqrt{\frac{4 \pi M e^{2}}{m}}$ the plasma frequency!
\Rightarrow oscillation m charge and \vec{E} with feer wp.
Another way to set plasma oscillations from maxwell's equations

When we considered EM wave gurpagation in a metal lely m^{-}the course, we limited descusstom to transverse modes where $\vec{k} \cdot \vec{E}=0$. The plasma csullation is a Londitudual mode $\bar{k} \cdot \bar{E} \neq 0$. charge conservation: $\vec{\nabla} \cdot \vec{f}=-\frac{\partial \rho}{\partial t}$
for harmonic oscillation: $\vec{f}=\vec{f}_{0} \cdot e^{-i \omega t} e^{i \vec{k} \cdot \vec{r}}$
freq ω, wavevector $\vec{h} \quad \rho=\rho_{0} e^{-i \omega t} e^{i \vec{k} \cdot \vec{r}}$

$$
\Rightarrow i \stackrel{\rightharpoonup}{k} \cdot \vec{f}_{0}=i \omega \rho_{0}
$$

But we also had $\quad \vec{y}_{0}=\sigma(\omega) \vec{E}_{0} \quad \sigma \sin _{1}$ conductuitf

$$
\Rightarrow i \stackrel{\rightharpoonup}{k} \cdot \sigma \vec{E}_{0}=i \omega \rho_{0}
$$

Fom Gans's Law $\vec{\nabla} \cdot \vec{E}=4 \pi \rho$

$$
\Rightarrow \quad i \vec{k} \cdot \vec{E}_{0}=4 \pi \rho
$$

Cambine abowe with cherge conservation to get

$$
\frac{\sigma}{\omega} \vec{k} \cdot \vec{E}_{0}=\frac{i \vec{k}}{4 \pi} \cdot \vec{E}_{0}
$$

If there is to de a solutioin, then ecther

$$
\vec{k} \cdot \vec{E}_{0}=0 \quad \Rightarrow \text { transverse mode }
$$

or

$$
\begin{aligned}
& \frac{4 \pi \sigma}{i \omega}=1 \\
\Rightarrow & 1+\frac{4 \pi i \sigma}{\omega}=0
\end{aligned}
$$

We saw the above quartety earker ni our descussion of transvese wave propogatein in metals. Then we had for the despersion selation for the transverse EM waves:

$$
k^{2}=\frac{w^{2}}{c^{2}}\left[1+\frac{4 \pi i \sigma}{w}\right]
$$

In anology with deelecitrics, one sometues

$$
\varepsilon(\omega)=1+\frac{4 \pi i \sigma(\omega)}{\omega} \text { for a mefal }
$$

$$
\uparrow
$$

comgles trequency dependert skelectra function

Longitudinal
oscillations occur when

$$
\varepsilon(\omega)=1+\frac{4 \pi i \sigma(\omega)}{\omega}=0
$$

From our decussion of the Dude model we had

$$
\sigma(\omega)=\frac{\sigma_{d c}}{1-i \omega \tau} \quad \sigma_{d c}=\frac{m e^{2} \tau}{m}
$$

For high frequencies $\omega \tau \gg 1, \sigma(\omega) \simeq \frac{\sigma_{0}}{-i \omega \tau}$
and so

$$
\begin{array}{rlrl}
\text { so } & =\frac{m e^{2}}{-i \omega m} \\
& =1-\frac{4 \pi m e^{2}}{m \omega^{2}} & & =1-\left(\frac{\omega_{p}}{\omega}\right)^{2}
\end{array} \quad \text { with } \quad \omega_{p}=\sqrt{\frac{4 \pi M e^{2}}{m}}
$$

So the condition $\varepsilon(\omega)=0$ for longetidual modes of osculation

$$
\Rightarrow \quad \omega=\omega_{p} \text { for way wewectors } \hat{k}
$$

Such longetudual modes are called "plasma" oscillations since the the longutudial osculations of the llestric feet $\left(\vec{k}-\vec{E}_{0} \neq 0\right)$ are (by Gauss' low) accompanied of oscillations ni elution charge densify.

Note, the above Maxwell equ anguenent gross a plasma oscillation at $\omega=\omega_{p}$ for an longetadral wave vector \vec{k}. Th reality, the frequency of plasma osullations does deist on \vec{k}.

In our derivation of $\sigma(\omega)$ we assumed that the wavelength λ of the EM osullatous was macioscopncaly large, ie \gg atomic lengths. This lead to a $\sigma(\omega)$ mdigendatof wavevector \vec{k}. (ie we ignored sptial depudarce y E on equation of motion of election). When one does a better job, one funds that $\varepsilon=1+4 \pi i \sigma(\omega) / \omega$ should really have a dependence on \vec{h} as well, that is unpoitait when h is of the order $1 / \alpha_{0}$, ie $\lambda \sim a_{0}$ atomic length scale. (Recall the k dependence of the Thomas-Femi delectice function
for the $\omega=0$ case). If one includes this t dependence of $\xi(\vec{k}, \omega)$, then the condition $\varepsilon(\vec{h}, \omega)=0$ gives a depersion relation for plasma oscillations:

$$
\omega_{p}(\vec{k}) \simeq \omega_{p}\left[1+\frac{3}{10} \frac{v_{F}^{2} k^{2}}{\omega_{p}^{2}}\right]
$$

where $\omega_{p}=\sqrt{4 \pi m e^{2} / m}$ as before an v_{F} is the Fens velocity
Note $\frac{v_{F}^{2} k^{2}}{\omega_{p}^{2}}=4\left(\frac{\varepsilon_{F}}{\hbar \omega_{p}}\right)^{2}\left(\frac{k}{k_{F}}\right)^{2}$

For Typical metals, $\varepsilon_{F} \sim 2-10 \mathrm{ev}$

$$
\hbar \omega_{p} \sim 10-20 \mathrm{eV}
$$

\Rightarrow correction to w_{p} at finite k is usually que te small for $k<k_{F}$.

As with other harmonic oscillations, the longutudural glasma oscillations of elections in a metal, get gecantigid in a more conflete quantum mediaicof treatment of the EM fields. When so quantized, the plasma osullations are referee to as "plasmons". ont howe serengen the energy associated orth the $n^{\text {th }}$ level of exultation of the osullations cot th coavevector \vec{k}, ie the energy of n plasmons of wave vector \vec{k}, is fist $(n+1 / 2)$ के $\omega_{p}(\vec{k})$.

Because $\hbar \omega_{p} \sim 10-20 \mathrm{eV} \Rightarrow k_{R} T$, jlasmons are not mi general thermally excited. However the zero point energy of the glasmon modes, ce the $\frac{1}{2} \hbar \omega_{p}(\bar{k})$, doris contribute to the total ground state energy of the election gas.

When one shoots a high energy elector n into a metal suface, one can see energy loses correspond to the excitation of integer number of plasmons with emerges $n \hbar \omega_{p}$.

Another moral from the story of the plasmon:
We stent with elections which are fermions. A bare election has energy $\varepsilon(n)=\frac{\hbar^{2} k^{2}}{2 m}$. When we induce effects of the Counlomb interactions among the elections in a gas of elections, we get not only femmonic degrees of freedom with dispersion relation $\varepsilon(\vec{k})=\frac{\hbar^{2} k^{2}}{2 m}$, but now we also get bosonic degrees of freedom, ie the plasmon with dispersion relation

$$
\hbar \omega_{p}(\vec{k}) \simeq \hbar \omega_{p}\left(1+\frac{3}{10} \frac{v_{F}^{2} k^{2}}{\omega_{p}^{2}}\right)
$$

$\tau_{\text {goes to constant } w_{p} \text { as } k \rightarrow 0 \text {. }}^{\text {weak defentunce }}$.
weak dependence on k for small $k<k_{F}$.
Moral: The presence of strong interactions among the "bore" (ie isolated) degrees of freedom can lead to elementary uscutations (ii new degrees of freedom) of the system that beer no resewtlave at all to the bare deguels of freedom - ie they can have a congsletely different dispersion relation $\Sigma(\vec{k})$ as can even have different symulty, i bosonci ustead of formionic. Tho is a general ride to remember in al al fields of physics! (Another condensed matter exagle is phomons: bore cons have $\varepsilon(k)=\frac{\hbar^{2} k^{2}}{2 M}$. But the Interacting ions bead to quantized elastic vibrations (phonons) with $\hbar \omega(\bar{k}) \sim c \hbar k-$ sound modes.).

Wigner Crustal
Although we argued that eve interactions are screened and so les importirit than one might expect, Wigner argued that the pree-elestoon-like filled Fernuisphare ground state could become unstable to an insulating dattiar of localized elections, when the density if the elution gas gets supfeuently small. The formetco of this Wigner election aggstal was proposed to bee che to a conjuetition between electrostatic potential energy and election pinite energy.

Wigner's orguement applies to a homogeneous election gas with a fixed uniform neutralying background of positive charge (ie musial of pout positive conns). A single argument is as follows.

Consider the elections localized to the pouts of a pervade latte of sites. Secures The voline per election is $V=\frac{V}{N}$. We can imagine durey the space up into spheres of radio $r_{s}\left(\frac{4}{3} \pi s^{3}=v\right)$ with inform positive oberge felly the spare ad the election at the center of the sphere. Of course such spheres may slightly overlap, and leave some voids in the regions where meightiong, sphere meet s but we groove such conghiciations for. the sake of simplicity. Since each sphere is
meutral, Gans law gries that the \vec{E} fiold out side each sphere will vauish, hence these spheres bave little or no interaction betceeen them, The electiostatic emegy per election is them fust the electrostatic eneqyy of the election and its unform sphere of positure charge. On dimensional grounds we can estenate thi' energy as $-e^{2 / r}$. Or we can do a calculation as follows:

Totol electrostatic enengly has two preies

$$
u=u_{e p}+u_{p p}
$$

where Ulep is interactuon of election with positire daye $^{\text {w }}$ a ad Upp in mteraction of positure cherge weth itself.

We can getboth by conguting the electostatic potentint $V(r)$ due to the unufirm sphere of positive charge.
(1/ cherse density $\rho=\frac{e}{\frac{4}{3} \pi r_{3}^{3}}$
Fiom symulty \vec{E} iे radealls symertric ad m radial drection. Gavs law then guves for simface of radin r

$$
\begin{aligned}
\oint \dot{E} \cdot d \vec{a}=4 \pi r^{2} E(r) & =4 \pi \overbrace{\hat{f}}^{4} \pi r^{3} \\
E(r) & = \begin{cases}\frac{4}{3} \pi \rho r & r<r_{s} \\
\frac{e}{r^{2}} & r>r_{s}\end{cases}
\end{aligned}
$$

substitite for ρ

$$
\begin{aligned}
& E(r)=\left\{\begin{array}{rr}
\frac{4}{3} \pi e r=\frac{e r}{r_{s}^{3}} & r<r_{s} \\
\frac{e}{3} \pi r_{s}^{3} & r>r_{s}
\end{array}\right. \\
& -\frac{d V}{d r}=E \Rightarrow V(r)=\left\{\begin{array}{cl}
-\frac{e r^{2}}{2 r_{s}^{3}}+\text { const } & r<r_{s} \\
\frac{e}{r} & r>r_{s}
\end{array}\right. \\
& V \text { contuwer at } r=r_{5} \Rightarrow \text { const }-\frac{e}{2 r_{5}}=\frac{e}{r_{5}} \\
& \text { const }=\frac{3}{2} \frac{e}{r_{s}} \\
& V(r)=\left\{\begin{array}{cc}
\frac{e}{r_{s}}\left\{3-\frac{r^{2}}{r_{s}^{2}}\right\} & r<r_{s} \\
\frac{e}{r} & r>r_{s}
\end{array}\right.
\end{aligned}
$$

self energy of posifue charge in

$$
\begin{aligned}
U_{p p} & =\frac{1}{2} \int d^{3} r \rho V=\frac{4 \pi}{2} \rho \int_{0}^{r_{s}} d r r^{2} V(r) \\
& =\frac{4 \pi}{2} \frac{e}{\frac{4}{3} \pi r_{s}^{3}} \int_{0}^{r_{s}} d_{r} \frac{e}{2 r_{s}}\left\{3 r^{2}-\frac{r^{4}}{r_{s}^{2}}\right\} \\
& =\frac{3}{4} \frac{e^{2}}{r_{s}^{4}}\left(r_{s}^{3}-\frac{r_{s}^{5}}{5 r_{s}^{2}}\right)=\frac{3}{4} \frac{e^{2}}{r_{s}^{4}} r_{s}^{3} \frac{4}{5} \\
U_{f p} & =\frac{3}{5} \frac{e^{2}}{r_{s}}
\end{aligned}
$$

energy of election-positive charge motracteoi is

$$
\begin{aligned}
& u_{e p}=-e v(0)=\frac{-e^{2} 3}{2 r_{s}} \\
& u=u_{e p}+u_{p p}=-\frac{e^{2}}{r_{s}}\left(\frac{3}{2}-\frac{3}{5}\right)=-\frac{e^{2}}{r_{s}}\left(\frac{15-6}{10}\right) \\
& u=-\frac{9}{10} \frac{e^{2}}{r_{s}}
\end{aligned}
$$

total electrostatic enengy per election of Wignir electecn lattexe.

We now have to add on the hmetic energy of the election confured to the sphere of radus r_{s}.

A mawie estrate of kuethe energy is as follows: For av election mi a sphere of radin r_{s}, atsicooceto the wavelenth of the wave functeon is $\lambda \sim r_{S}$ $\Rightarrow k=\frac{2 \pi}{r_{s}} \Rightarrow$ kuetic enengy in $\frac{\hbar^{2} h^{2}}{2 m} \sim \frac{4 \pi^{2} \hbar^{2}}{2 m r_{s}^{2}}$ Total eneyy per electoen of Wigner enttice s

$$
E_{w}=-\frac{9}{10} \frac{e^{2}}{r_{s}}+4 \pi^{2} \frac{\hbar^{2}}{2 m r_{s}^{2}}
$$

Canpone this to the enenzy por electeon the filled Femi sphere

$$
E_{F}=\frac{3}{5} \varepsilon_{F}
$$

To curare these two energies

$$
E_{w}=-\frac{9}{10} \frac{e^{2}}{a_{0}}\left(\frac{a_{0}}{r_{s}}\right)+\frac{4 \pi^{2}}{2} \frac{\hbar^{2}}{m e^{2}} \frac{e^{2}}{r_{s}^{2}}
$$

we $a_{0}=\frac{\hbar^{2}}{m e^{2}}$

$$
\begin{aligned}
E_{w} & =-\frac{9}{10} \frac{e^{2}}{a_{0}}\left(\frac{a_{0}}{r_{s}}\right)+2 \pi^{2} \frac{e^{2}}{a_{0}}\left(\frac{a_{0}}{r_{s}}\right)^{2} \\
& =+\frac{e^{2}}{a_{0}}\left[-\frac{9}{10}\left(\frac{a_{0}}{r_{s}}\right) 2 \pi^{2}\left(\frac{a_{0}}{r_{s}}\right)^{2}\right]
\end{aligned}
$$

whereas
from lecture 4

$$
E_{F}=\frac{3}{5} \varepsilon_{F}=\frac{3}{5} \frac{e^{2}}{2 a_{0}}\left(k_{F} a_{0}\right)^{2}=\frac{3}{10} \frac{e^{2}}{a_{0}}(1.92)^{2}\left(\frac{a_{0}}{r_{S}}\right)^{2}
$$

So the energy differing is

$$
\left.\left.\begin{array}{rl}
E_{W}-E_{F}= & -\frac{e^{2}}{a_{0}}\left\{\frac{9}{10}\left(\frac{a_{0}}{r_{S}}\right)\right.
\end{array}-2 \pi^{2}\left(\frac{a_{0}}{r_{S}}\right)^{2}\right\}=\frac{6}{5}\left(\frac{a_{0}}{r_{S}}\right)^{2}\right\}
$$

so the Wigner lattice will hove lower energy then the filled Fermi sphere (and hence will be the better ground stack) when

$$
\begin{aligned}
& E_{W}-E_{F}<0 \Rightarrow \frac{9}{10}-18\left(\frac{a_{0}}{r_{s}}\right)>0 \\
& \quad \Rightarrow r_{s}>20 a_{0}
\end{aligned}
$$

So for suffucerity dilute election gas, the Wigner lattice should become the ground state because the negative electrostatic energy outweighs the morease in hreitco energy.
The above was a rough calculation. Clench on estimate for both potential ad knee energy terms for the Wigner lattice were rough estimates.

A more a dvarred calculation, usu density functional method [Ceperley + Alder, PRL 45, 566 (1980)]
gives the critical value of r_{s} as

$$
r_{s} \approx 100 a_{0}
$$

Cooper pairing
An arbitrary weak but attractive interaction between two elections excited above the filled Feme surface beads to a bound state of the elections with energy $E<2 \varepsilon_{F}$. This then leads to an instability of the filled Fermi sphere to such bound pair formation, that completely changes the nature of the ground state of the N-election system and leads to the phenomenon of sujerconducturity (BCS - Bordeen-Cooper-Schrrefer theory of superionductiont).
The presence or the filled Fermi sphere is curial to The presence of the filled Fermi sphere is curial to the effect - congare to two isolated particles in 3D where a bound state will not form unless the uteraction exceeds a certain strength.

Consider a jain of elections excited above the Fermi surface ε_{F}. Assume that the gond state of this pair will have zero net momentum and zero met spin (smiflet spin state). (Since the interaction is attractive elections \Rightarrow prefer to be near each other \Rightarrow most fawarable wavefuction is spatially symmetric, so it must be cuntesynmetro in spin).

Let \vec{r}_{1} ad \bar{r}_{2} be the positions of the two elections. Assume that the two -particle wove function has the form:

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{V} \sum_{k} g_{k} e^{i \vec{k} \cdot \bar{r}_{1}} e^{-i \vec{k} \cdot \vec{r}_{2}} \quad \text { (vi volume) }
$$

ie $\vec{k}_{1}=-\bar{k}_{2}$ so that ital momentum of the pair is zeno.
since we have a spin singlet (ie. antisymmetric opposite spins), the real-space parl of the wavefunction should be symmetric in exchange of r 1 and r 2 . Hence we need $\mathrm{g}(\mathrm{k})=\mathrm{g}(-\mathrm{k})$. We will see our solution will be consistent with this Since the electors one above a filled Fermi sphere we must have $g_{k}=0$ for all $|\vec{k}|<k_{F}$ since there states ore already occupied.

If $U\left(\vec{r}_{i}-\vec{r}_{2}\right)$ is the mieraction between the two elutions, then the sotrodigir equation is

$$
-\frac{\hbar^{2}}{2 m}\left[\nabla_{1}^{2}+\nabla_{2}^{2}\right] \psi+u\left(\vec{r}_{1}-\vec{r}_{2}\right) \psi=E \psi
$$

Use Fukien tRansform $U\left(\overrightarrow{r_{1}}-\bar{r}_{2}\right)=\frac{1}{V} \sum_{q} U_{g} e^{i} \bar{\delta} \cdot\left(\bar{r}_{1} \cdot \bar{r}_{2}\right)$ Plug into sohroduger equation to get

$$
\begin{aligned}
& \frac{1}{r} \sum_{k} \frac{\hbar^{2}}{2 m}\left[k^{2}+k^{2}\right] g_{k} e^{i \vec{k} \cdot\left(\vec{r}_{1}-\bar{r}_{2}\right)}+\frac{1}{V^{2}} \sum_{k^{\prime} g} u_{q} e^{i \bar{g} \cdot\left(r_{1} \cdot \vec{r}_{2}\right)} g_{k^{\prime}} e^{i \overrightarrow{k^{\prime}} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \\
& =E \frac{1}{V} \sum_{k} g_{k} e^{i \vec{k} \cdot\left(\bar{n}-\vec{r}_{2}\right)} \\
& \Rightarrow \sum_{k}\left\{\frac{\hbar^{2} k^{2}}{m} g_{k}+\frac{1}{v} \sum_{k^{\prime}} u_{k-k^{\prime}} g_{k^{\prime}}-E g_{k}\right\} e^{i \bar{k} \cdot\left(\overline{\left.r_{1}-r_{2}\right)}\right.}=0
\end{aligned}
$$

where we made substitution $\vec{g}=\vec{k}-\bar{k}^{\prime}$ in the potential term

$$
\left.\begin{array}{r}
\Rightarrow \frac{\hbar^{2} k^{2}}{m} g_{k}+\frac{1}{v} \sum_{k^{\prime}} u_{k-k^{\prime}} g_{k}^{\prime}=E g_{k} \\
g_{k}=0 \quad \text { for }|\vec{k}|<k_{F}
\end{array}\right\} \begin{aligned}
& \text { Bethe } \\
& - \text { Goldstenk } \\
& \text { equation }
\end{aligned}
$$

usury $\varepsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m}$ we have

$$
\left(E-2 \varepsilon_{k}\right) g_{k}=\frac{1}{V} \sum_{k^{\prime}} u_{k-k^{\prime}} g_{k^{\prime}}
$$

This is very difficult to solve for a gevend U_{k-k} '. To sugilify, we make a cunde ayjuoxmation. max phonon ena.jy

$$
u_{k-k^{\prime}}=\left\{\begin{array}{cc}
-u_{0} & \text { if } \varepsilon_{k}, \varepsilon_{k^{\prime}} \text { withe } \hbar \omega_{D} \text { of } \varepsilon_{F} \\
0 & \text { otherwise }
\end{array}\right.
$$

$\Rightarrow g_{k}=-\frac{u_{0}\left(\frac{1}{v} \sum_{k^{\prime}}^{\prime} g_{k^{\prime}}\right)}{E-2 \varepsilon_{k}}$
where Σ^{\prime} means a sum over \vec{k}^{\prime} such that $|\vec{k}|>k_{F}$ and

Now sum both sides over \bar{k} $\frac{\hbar^{2} k^{\prime 2}}{2 m}<\varepsilon_{F}+\hbar \omega_{s}$

$$
\left(\sum_{k}^{\prime} g_{k}\right)=-u_{0}\left(\frac{1}{v} \sum_{k^{\prime}}^{\prime} g_{k^{\prime}}\right)\left(\sum_{k}^{\prime} \frac{1}{E-2 \Sigma_{k}}\right)
$$

cancell $\sum g_{k}$ from both sides to get

