Tight Binding method
If wins are spaced for apart on the length scale on which the atomic bound state wavefuntion' decays, then expect that atomic wave functions will gie a good aggraximation to the Block election eyenstate in the penodic potential of all cons.

$$
A \wedge \wedge \Omega
$$

However the tails of the atomic wavefunctions will overlaps allowing the election to hop from con to ion, behairy bike a free Bloch election.

For singlect, assume the atomic valence election is a single "s" orpifel elector. this atomic state is mon-desenerate. Let its wave function be $P_{0}(\vec{r})$ for con cantered at origin.

We can construct a' Bloch election state out of the indurdical atonic states $P_{0}(\dot{r}-\vec{R})$ by

$$
\psi_{k}(\vec{F})=\sum_{i} e^{i \vec{k} \circ \vec{R}_{i}} \varphi_{0}\left(\vec{r}-\vec{R}_{i}\right)
$$

Counting: We go from N atonic wavefuction $\varphi_{0}\left(\vec{r}-\vec{e}_{i}\right)$, N values of \vec{R}_{i}, to N Bloch wavefunctions $\psi_{k}(\vec{r}), N$ values of \vec{k} in $1^{s t} B Z$.

Sonly mix atonic wavefunction's $P_{0}\left(\vec{r}-\vec{R}_{2}\right)$ where election has same spin value)

Let $H=H a t+\Delta U$
His Haunltoman of entire system
Hat is Haultoulai of atom at origen
ΔU is potuctial from all atoms except the one at the origu'
ie if total pitatial is $U(\vec{r})=\sum_{R_{i}} v\left(\vec{r}-\vec{R}_{i}\right)$

$$
\begin{aligned}
& H=\frac{p^{2}}{2 m}+u(\vec{r}) \\
& H_{a t}=\frac{p^{2}}{2 m}+v(\vec{r}) \\
& \Delta u=\sum_{R_{i} \neq 0} v\left(\vec{r}-\vec{R}_{i}\right)=U(\vec{r})-v(\vec{r})
\end{aligned}
$$

choose energy scale so that $\Delta U(0)=0$.

| Δu | \cap^{1} |
| :---: | :---: | :---: |
| 0 | |

$$
\begin{aligned}
\left\langle\varphi_{0}\right| H\left|\psi_{k}\right\rangle= & \left\langle\varphi_{0}\right| H_{a t}+\Delta u\left|\psi_{k}\right\rangle \\
\varepsilon_{k}\left\langle\varphi_{0} \mid \psi_{k}\right\rangle= & E_{a}\left\langle\varphi_{0} \mid \psi_{k}\right\rangle+\left\langle\varphi_{0}\right| \Delta u\left|\psi_{k}\right\rangle \\
& \uparrow
\end{aligned}
$$

$$
\uparrow
$$

merge of Black
state ψ_{k}

$$
\varepsilon_{k}=E_{a}+\frac{\left\langle\varphi_{0}\right| \Delta u\left|\psi_{k}\right\rangle}{\left\langle\varphi_{0} \mid \psi_{k}\right\rangle}
$$

$$
\begin{aligned}
\left\langle\varphi_{0} \mid \psi_{k}\right\rangle & =\sum_{i} e^{i \vec{k} \cdot \vec{R}_{i}} \int_{0}^{3} r \varphi_{0}^{*}(\vec{r}) \varphi_{0}\left(r^{-}-\vec{R}_{i}\right) \\
& =1+\sum_{R_{i} \neq 0} e^{i \vec{k} \cdot \vec{R}_{i}} \underbrace{\int d^{3} r \varphi_{0}^{*}(\vec{r}) \varphi_{0}\left(\vec{r}-\overrightarrow{R_{l}}\right)}_{\text {overlap }} \\
& { }_{\text {form }} \vec{R}=0
\end{aligned}
$$

If ins are for ayssont, over lap integrals are small. Only keep nearest neiglibor terms, ie only sun over the smallest nonzero values of \vec{R}.

$$
\begin{aligned}
& \left\langle\varphi_{0} \mid \psi_{k}\right\rangle=1+\sum_{n n} e^{i \vec{k} \cdot \vec{R}_{i}} \underbrace{\int d^{3} r \varphi_{0}^{*}(\vec{r}) \varphi_{0}\left(\vec{r} \vec{R}_{i}\right)}_{\alpha\left(\vec{R}_{i}\right)} \\
& \left\langle\varphi_{j} \mid \psi_{k}\right\rangle=1+\sum_{n n} e^{i \vec{k}^{\prime} \cdot \vec{R}_{i}} \alpha\left(\vec{R}_{i}\right) \\
& \alpha \text { is small } \\
& \left\langle\varphi_{0}\right| \Delta u\left|\psi_{k}\right\rangle=\sum_{i} e^{i \vec{k}^{-} \cdot \vec{R}_{2}} \int d^{3} r \psi_{0}^{*}(\vec{r}) \Delta U(\vec{r}) \varphi\left(\vec{r}-\vec{R}_{3}\right) \\
& =\int d^{3} r \varphi_{0}^{*}(r) \Delta u(\vec{r}) \varphi_{0}(\vec{r}) \\
& +\sum_{R_{i} \neq 0} e^{i \vec{k} \cdot \vec{R}_{e}} \int d^{3} r \varphi_{0}^{*}(\vec{r}) \Delta U(\vec{r}) \psi\left(\vec{r} \cdot \vec{R}_{2}\right.
\end{aligned}
$$

again, keep only terms for nearest neighbor \vec{R}_{2}.
define $\quad \beta \equiv-\int d^{3} r \varphi_{0}^{*}(\vec{r}) \Delta U(\vec{r}) \varphi_{0}(\vec{r})$

$$
\begin{aligned}
& \gamma(\vec{R}) \equiv-\int d^{3} r \varphi_{0}^{*}(\vec{r}) \Delta u(\vec{k}) \varphi_{0}\left(\dot{r}^{2} \vec{R}_{i}\right) \\
& \left\langle\psi_{0}\right| \Delta u\left|\psi_{k}\right\rangle=-\beta-\sum_{n n} e^{i \vec{R}_{2} \vec{R}_{i}} \gamma(\vec{k})
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{k} \simeq E_{a}-\left[\frac{\beta+\sum_{n n} e^{i \vec{k} \cdot \vec{R}_{i}} \gamma(\vec{R})}{1+\sum_{n n} e^{i \vec{k} \cdot \vec{R}_{i}} \alpha(\vec{R})}\right] \\
& \varepsilon_{k} \simeq E_{a}-\beta-\sum_{n n} e^{i \vec{k} \cdot \vec{R}_{i}}(\gamma(\vec{R})-\beta \alpha(\vec{R}))
\end{aligned}
$$

since α small, $\frac{1}{1+\alpha} \simeq 1-\alpha$ terms of order $(\gamma \alpha)$ are durppel as 2 rd order
Now $\alpha(\vec{R})=\int d^{\vec{r}} \varphi_{0}^{*}(\vec{r}) \varphi_{0}(\vec{r}-\vec{R})=\int d^{3} r \varphi_{0}^{*}(\vec{r}+\vec{R}) \varphi_{0}(\vec{r})$

$$
=\alpha^{*}(-\vec{R})
$$

Fer s-orbital has real wave function $\varphi_{0} \Rightarrow \alpha=\alpha^{*}$ So $\quad \alpha(\vec{R})=\alpha(-\vec{R})$

$$
\begin{aligned}
\gamma(\vec{R}) & =-\int d^{3} \varphi_{0}^{*}(\vec{r}) \Delta u(\vec{r}) \varphi_{0}(\vec{r}-\vec{R}) \\
& =-\int d^{3} r \varphi_{0}^{*}(-\vec{r}) \Delta u(-\vec{r}) \varphi_{0}(-\vec{r}-\vec{R})
\end{aligned}
$$

If aystal has aversion syounetuy, ie $\Delta U(-\bar{r})=\Delta U / \vec{r})$ and sine s-orbital is spheviculg symmetric, ie $\varphi_{0}(\vec{r})$ defends only on $|\vec{r}|$ so $\varphi_{0}(\vec{r})=\varphi_{0}(-\vec{r})$, then

$$
=-\int d^{2} r \varphi_{0}^{*}(\vec{r}) \Delta u(\vec{r}) \varphi_{0}(\vec{r}+\vec{R})=r(-\vec{R})
$$

So $\gamma(\vec{R})=\gamma(-\vec{R})$ and $\alpha(\vec{R})=\alpha(-\vec{R})$

$$
\varepsilon_{k}=E_{a}-\beta-\sum_{n n}[\gamma(\vec{R})-\beta \alpha(\vec{R})] \cos \vec{k}-\vec{R}
$$

Moreover if the cupetal ha cubic symmetry, then since φ_{0} is notationally Symmetric, $\gamma(\vec{R})$ ad $\alpha(\vec{R})$ will be the same value for all $n n \vec{R}$

ΔU will have cubic symmetry so

$$
\begin{aligned}
& \gamma(\vec{R})=\gamma\left(\vec{R}^{\prime}\right) \\
& \alpha(\vec{R})=\alpha\left(\vec{R}^{\prime}\right)
\end{aligned}
$$

$$
\varepsilon_{k}=E_{a}-\beta-\tilde{\gamma} \sum_{n n} \cos (\vec{k} \cdot \vec{R}) \quad \tilde{\gamma}=\gamma-\beta \alpha
$$

See $A+M$ for case of fec lattice.
Here we consider the sungler sa entice $n n \vec{R}$ are $\pm a \hat{x}, \pm a \hat{y}, \pm a \hat{z}$

$$
\begin{gathered}
\vec{R} \cdot \stackrel{\rightharpoonup}{R} \text { are } \pm k_{x} a, \pm k_{y} a, \pm k_{z} a \\
\varepsilon_{k}=E_{a}-\beta-2 \tilde{\gamma}\left(\cos k_{x} a+\cos k_{y} a+\cos k_{z} a\right)
\end{gathered}
$$

band width $\varepsilon_{k}^{\text {max }}-\varepsilon_{k}^{\text {min }}=12 \tilde{\gamma}$
for small k, $\cos k a \approx 1-\frac{1}{2} k^{2} a^{2}$

$$
\begin{aligned}
\varepsilon_{k} & \cong E_{a}-\beta-2 \tilde{\gamma}\left(3-\frac{1}{2} k_{x}^{2} a^{2}-\frac{1}{2} k_{y}^{2} a^{2}-\frac{1}{2} k_{z}^{2} a^{2}\right) \\
& \cong E_{a}-\beta-6 \tilde{\gamma}+\tilde{\gamma} k^{2} a^{2}
\end{aligned}
$$

\Rightarrow surfaces of constant energy $\sim k^{2}$ so ore spherical, just lite free elections (or in weak potential approx if k is mot near an Bragg plane)
effective mass $\frac{1}{2} \frac{\hbar^{2} k^{2}}{m} \sim \tilde{\gamma}^{2} k^{2} a^{2}$

$$
\Rightarrow \quad m^{*} \simeq \frac{\hbar^{2}}{2 \tilde{\gamma} a^{2}}
$$

But at higher k
in $2 D \quad \varepsilon_{k}=\varepsilon_{a}-\beta-2 \tilde{\gamma}\left(\cos k_{x} a+\cos k_{y} a\right)$
the curves $k_{y}=\frac{ \pm \pi}{a} \pm k_{x}$ have constant energy

$$
\cos k_{x} a+\cos \left(\pm \pi \pm k_{x}\right)
$$

$$
k_{1 \pi a}=\cos k_{x} a+\cos \left(\pi \pm k_{x}\right)=0
$$

court energy surface enclosing $\frac{1}{2}$ area of $1^{\text {st }} B Z$
this will be Fermi surface for $Z=1 \Rightarrow 1$ electern
${ }^{\text {st }}$ BZ (nested 1 (Fermi suffice per BL site, so 1^{S+} BU is half filled.
So. Fern simface need nit be close to spherical I

Nested Fernisurface - when a comon wavevech
 CI maps a secteon of the fiomi sufface onto awother secteon.
\leftarrow In tho exaple, \vec{Q}_{1} tates $\frac{1}{4}$ feris surface orto oprosite suface
\Rightarrow May electoons at feni sufface can scatter by \vec{Q} with litlle cost in energy.
systen thas strang susceptiboliff with respect to fluctucateons at wavevector \vec{Q}.

This dos not haspen for phencil Ferui' suyaces

For a fixed wacevector $\overrightarrow{C Q}$ as shown, only a suall praction of fanci suface can seatter at lalle energy cosh h.

For \vec{k} near $\vec{k}_{0}= \pm \frac{\pi}{a} \hat{x} \pm \frac{\pi}{a} \hat{y} \quad$ corner of $B Z$

$$
\begin{aligned}
& \vec{k}= \overrightarrow{\delta k}+\vec{k}_{0} \\
& \varepsilon_{k}= E_{a}-\beta-2 \tilde{\gamma}\left(\cos \left(\pm \pi+\delta k_{x} a\right)+\cos \left(\pm 1+\delta k_{y} a\right)\right) \\
&= E_{a}-\beta+2 \tilde{\gamma}\left(\cos \delta k_{x} a+\cos \delta k_{y} a\right) \\
& \quad \uparrow \\
& \quad \operatorname{sigi} w \text { now }
\end{aligned}
$$

\uparrow depends only on $|\& \vec{k}|^{2}$
so constant energy curves one circular about \vec{k}_{0}

\leftarrow constant energy surfaces
minion energy of had is at origin $\vec{k}=0$
maxim energy of land 5 at corners $\vec{k}_{0}= \pm \frac{\pi}{a} \hat{x} \pm \frac{\pi}{a} \hat{y}$

Tight Binding Density of States

Here are plots of densities of states for the tight-binding Hamiltonian for "cubic" lattices in several dimensions. In three dimensions the energy is given by

$$
\begin{equation*}
\epsilon(k)=t\left[6-2\left(\cos k_{x} a+\cos k_{y} a+\cos k_{z} a\right)\right] \tag{1}
\end{equation*}
$$

with analogous expressions for other dimensions. Note the Van Hove singularities.

Density of States, $d=6$

What happens in our tegiet binding model if each con contributes 2 elections, ie $z=2$?

If the width of the s-band $\sim \tilde{\gamma}$ is sufficient small so that the maximin energy of the s-band is well below the energy of the atonic p-orbital Cactually it needs to be below the lowest energy of the p-band erpputed from the p-orbitils), then the 2 N elections will completely foll the $2 N$ states of the 5 -band, leavers the higher p-band errsty. The \vec{k} of the $1 s t i s z$ of the s-band are will filled and the Feme surface (the points in \hat{k}-space that hove the most evergetic elections) will be the disqete points

$$
\vec{k}_{0}= \pm \frac{\pi}{a} \hat{x} \pm \frac{\pi}{a} \hat{y} \pm \frac{\pi}{a} \hat{\jmath} \quad \text { (for sc. } B L \text {) }
$$

at the corners of the $1^{\text {st }} B Z$ - these one the \vec{k} that guess the largest $\varepsilon(\vec{k})$ for the s-band.

The system is then an insulator, with a finite energy gap between states ot the Fens surface and the lowest unoccupied election states (in the p-band).

