

Generation of the second standing Waves in an Air Column

Segev BenZvi Department of Physics and Astronomy University of Rochester

Last Time...

- The partials present in a complex tone contribute to the timbre of the sound. Partials can be harmonic (ideal integer multiples of the fundamental frequency) or inharmonic
- High-frequency components affect the brightness of a sound
- Fourier's Theorem: any reasonably continuous periodic function can be expressed in terms of a sum of sinusoidal functions
- Spectrograms plot the square modulus of the Fourier coefficients vs. time (power spectrum)
- Sampling and the Nyquist Limit: a waveform sampled at rate f_s can be reconstructed up to frequency $f_s/2$

Song of the Day

Produced using a "whirlie" (google Sarah Hopkins)

Waves in an Air Column

- Today we'll talk about standing waves in a column of air
- This is quite analogous to the topic of standing waves on a string, which we covered in detail during the past two classes
- However, your intuition has to change a bit:
 - The string supported transverse waves
 - An air column supports longitudinal waves

Waves in an Air Column

©2012, Dan Russell

Displacement and Pressure

Open tube (e.g., a flute) supports these waves:

TUBE OPEN AT BOTH ENDS

Copyright © 2005 Pearson Prentice Hall, Inc.

Displacement and Pressure

A closed tube (e.g., a clarinet) supports these waves:

Harmonics/Overtones

- The closed tube (clarine) only supports odd harmonics: f, 3f, 5f, ...
- The open tube (flute, pipe organ) supports all integer harmonics: f, 2f, 3f, 4f, 5f, ...
- The tubes may be the same but the boundary conditions vary
 - Closed end: allows high pressure but no motion
 - Open end: allows high motion but no changes in pressure to match exterior pressure

Music from Pipe Overtones

The "whirlies" in this album are played by exciting the overtones of one or two pipes simultaneously

Spin the pipe faster and you raise the pitch

Fundamental Tones

Which has the lower fundamental tone? An tube open on both ends or a tube with one closed end?

Really nice demo of clarinet and flute with switched mouthpieces at UNSW

http://newt.phys.unsw.edu.au/jw/flutes.v.clarinets.html

Clarinet vs. Flute

Clarinet vs. Flute

Note the difference in the fundamental tones and the harmonics supported

PHY 103: Physics of Music

Open/Closed Ends

- Effective a tube closed one one end:
 - Reed instruments
 - Horns
 - Didgeridoo
 - Panflute (depends on construction)
- Effectively a tube of air open on both ends:
 - Flutes
 - Organ pipes
 - Recorders and whistles

Speed of Sound in Air

 $v = \sqrt{\frac{F_T}{\rho}}$

Recall the speed of waves on a string:

• We can guesstimate an equivalent for air

- Energy of air molecules: $E \sim k_{\rm B}T$
- Kinetic energy goes like $E \sim mv^2$
- Equate the energy and solve for v:

$$v = \sqrt{\frac{k_B T}{m}}$$

Speed of Sound in Air

Plug in some numbers:

$$M_{1 \text{ mol}} = \rho_{\text{air}} \cdot V_{1 \text{ mol}} = 1.2754 \text{ kg/m}^{-3} \cdot 22.4 \text{ L}$$

= 0.02857 kg
$$m = \frac{M}{N_A} = \frac{0.02857 \text{ kg}}{6.022 \cdot 10^{23}} = 4.74 \cdot 10^{-26} \text{ kg}$$

$$v = \sqrt{\frac{k_B T}{m}} = \sqrt{\frac{1.38 \cdot 10^{-23} \text{ J/K} \times 293 \text{ K}}{4.74 \cdot 10^{-26}}} \approx 300 \text{ m/s}$$

Not bad! The real number is given by the Newton-Laplace formula:

$$v = \sqrt{\gamma \cdot \frac{k_B T}{m}}$$
, where $\gamma = 1.4 \Rightarrow v \approx 343$ m/s

Frequency of Open Pipe

• The fundamental frequency of an open-open pipe is

f = v / 2L

At 20 C, v=343 m/s, so for a 1 meter open pipe $f \approx (343 \text{ m/s})/(2 \cdot 1 \text{ m})$ =171.5 Hz

Frequency of Closed Pipe

The fundamental frequency of an closed pipe is

f = v / 4L

At 20 C, v=343 m/s, so for a 1 meter closed pipe $f \approx (343 \text{ m/s})/(4 \cdot 1 \text{ m})$ = 85.75 Hz

Acoustic Resonance

- If a system is driven at one of its natural vibrational frequencies, or normal modes, it will amplify the input
- Example: using a speaker to drive air in a pipe

• Correctly timed excitations cause the mode to grow

Reflections at Endpoints

• Waves reflecting off open or closed boundaries:

Image courtesy of Dan Russell, Graduate Program in Acoustics, PSU

At a closed boundary, the wave will be phase shifted by 180 degrees

Reflections at Boundaries

- Sign of the wave depends on the nature of the boundary
- If the sign is the opposite or the same at both boundaries then two reflections are needed to recover the original wave
- If the sign is opposite on one side and the same on the other then four reflections are needed

End Correction for Pipe

- Reflections of sound waves on a real pipe do not occur exactly at the physical boundary, but slightly beyond it
- In other words, the pipe's acoustic length is slightly longer than its physical length by an amount $\Delta L=0.8d$ (open pipe), where d is the diameter of the pipe
- As a result, the frequencies of the closed and open pipes are

$$f_{\text{open}} = \frac{nv}{2(L+0.8d)}$$
 $f_{\text{closed}} = \frac{nv}{4(L+0.4d)}$

Summary

- Normal modes of open/closed pipes:
 - Half-wavelength fundamental in open pipes
 - Quarter-wavelength fundamental in closed pipes
 - Longitudinal pressure and displacement waves
- Resonances: particular input frequencies where a pipe (or any acoustic system) results in amplification
- Boundary conditions: reflections which affect acoustic behavior such as resonances
 - Correspondence bet. physical and acoustic lengths may not be exact, requiring edge corrections

Fast Fourier Transform (FFT)

- The Adobe Audition program (and it's freeware version Audicity) will perform a Fourier decomposition for you
- On the computer we can't represent continuous functions; everything is discrete
- The Fourier decomposition is accomplished using an algorithm called the Fast Fourier Transform (FFT)
 - Works really well if you have N data points, where N is some power of $2: N = 2^k$, k = 0, 1, 2, 3, ...
 - If N is not a power of two, the algorithm will pad the end of the data set with zeros
- Details: <u>Numerical Recipes in C</u>, W. Press et al., 1992

Calculating the FFT

- When you calculate an FFT, you have freedom to play with a couple of parameters:
 - The number of points in your data sample, N
 - The window function used

Effect of FFT Size

• Larger N = better resolution of harmonic peaks

PHY 103: Physics of Music

Uncertainty Principle

- Why does a longer data set produce a better resolution in the frequency domain?
- Time-Frequency Uncertainty Principle:

- Localizing the waveform in time (small N, and therefore small Δt) leads to a big uncertainty in frequency (Δf)
- Localizing the frequency (small Δf) leads means less localization of the waveform in time (large Δt)

Effect of Window Function

Certain windows can give you better frequency resolution

- Why do we use a window function at all?
 - Because the Fourier Transform is technically defined for periodic functions, which are defined out to $t = \pm \infty$
 - We don't have infinitely long time samples, but truncated versions of periodic functions
 - As a result, the FFT contains artifacts (sidebands) because we've "chopped off" the ends of the function at $\pm \infty$
 - The window function mitigates the sidebands by going smoothly to zero in the time domain
 - Thus, our function doesn't drop sharply to zero at the start and end of the sample, giving a "nicer" FFT

Window Examples

• Time and frequency behavior of common windows:

PHY 103: Physics of Music

Fipple Flute

Air from the source oscillates back and forth across the knife edge by the motion of the standing wave inside the air column

