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Song of the Day

p ldentify this piece of music...

p If you can’t guess (I couldn’t), try to guess what era
this song comes from

p How can you tell?
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|0cc: I'm Not in Love (1975)

p Here is the first verse of the song...

p Growing up, | heard this on AM radio (“oldies”) and FM
stations with the 60s/70s/80s format

p You might have heard it used in The Guardians of the Galaxy
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Fender Rhodes Piano

p The synthesized keyboard kind of gives away the era
when this song was written

commons.mediawiki.org

common in pop music from the 1960s to the 1980s
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http://www.apple.com

Choral Effect

p The background chorus (““‘ahhh...”) was the band members
singing individual notes, overlaid to create a choral effect

p In 1975 they didn’t have computers to help them. All effects were
made by splicing |6-track tape loops, taking weeks

p Click here for an interesting 10-minute doc about it from 2009
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https://youtu.be/Qq7oGenbp2I

Last Time: Waves on a String

p Last time, with a bit of work, we derived the wave equation
for waves on an open string

d’ d’y 1d° T

—)2;:’0- Z: . z, where v=_|—

dc> T dt* v dt \ p

p This describes the motion of a piece of oscillating rope as a
function of time t and position x. It has two solutions:

y(x,t)=Asin(kx £ wt)

2T T
= Asin— (x£vt), wherev=Af= |—
A \p

p These are traveling waves moving to the right and to the left
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Standing Waves

p On a string with both ends fixed, you can set up standing
waves by driving the string at the correct frequency
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p The standing waves are the superposition of traveling waves
reflecting from the ends of the string with v=+/T/p
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Notes and String Length

g;; p Mathematical relationship
“T """" f between string length and pitch
| tengeh L2 p When you halve the string

§ frequency 2f . . .
while keeping the tension the

B same, the pitch goes up by one
B octave

length L,
frequency f

p Cutting the string in half means
l the frequency goes up by 2

p One octave = doubling of the
frequency of the note
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Harmonics
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Harmonics

? p An open string will
fo= 2f vibrate in its

’ fundamental mode and
f = nf, overtones at the same

time

oy

p True not just for strings,
but all vibrating objects

P We demonstrated the
presence of overtones
by making a spectrogram

LK KKK KD 6 of a plucked string
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Spectrogram of a Harp

overtones

frequency

fundamental

time
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Harmonics

< 2

oL o oK >4

OO ¢

p You can cause the string
to vibrate differently to
change the timbre

p If a string is touched at its
midpoint, it can only
vibrate at frequencies
with a node at the

midpoint

p The odd-integer
harmonics (including the
fundamental frequency)
are suppressed

9/9/15 PHY 103: Physics of Music



Music Terminology

p Instrumental tones are made up of sine waves

p Harmonic: an integer multiple of the fundamental
frequency of the tone

p Partial: any one of the sine waves making up a complex
tone. Can be harmonic, but doesn’t have to be

p Overtone:any partial in the tone except for the
fundamental. Again, doesn’t have to be harmonic

p Inharmonicity: deviation of any partial from an ideal
harmonic. We'll return to this concept when we
discuss musical intervals in detail
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Fourier Analysis

p Fourier’s Theorem: any reasonably continuous periodic
function can be decomposed into a sum of sinusoids:

f(t)=a,+ Zan cosnt +b,_sinnt
n=1
p The sum can be (but doesn’t have to be) infinite

p The series is called a Fourier series with coefficients

1 t

a, f(t)COSﬂdl‘ 2 x avg. of f(t) X cosine
T T
1 Tt

b f(t)smn—dt 2 % avg. of f(t) X sine

T T
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Visualization: Square Wave

p A square wave oscillates
between two constant values

p E.g., voltage in a digital circuit

p Fourier’s Theorem: the square
pulse can be built up from a set
of sinusoidal functions

p Not every term contributes
equally to the sum

p l.e, the ax and by can differ to
produce the right waveform
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Visualization: Sawtooth Wave

p The sawtooth waveform represents the function

f)=t/n, —m<t<nm
f@+2rn)= f(t), —oo<t<oo,n=0,1,2,3,...

p Also called a“ramp” function, used in synthesizers.
Adding more terms gives a better approximation
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Wednesday Lab

p Tomorrow you will observe different waveforms
produced by a function generator
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p You'll display the waveforms on an oscilloscope
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440 Hz Sine Wave

p The 440 Hz sine wave (A4 on the piano) is a pure
tone

http://www.audiocheck.net/audiofrequencysignalgenerator_index.ph
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http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

440 Hz Triangle Wave

p The triangle wave is also built from a series of the
higher harmonics

uencysignalgenerator_index.ph
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440 Hz Sawtooth

p The sawtooth waveform: not a particularly pleasant

uencysignalgenerator_index.ph

hms 0.328 0.330 0.332 0.334 0.336 0.338 0.340 0342 0.344 0.346 0.348 0.350 0.352 0.354 0.356 N
! ! ! 1 | 1 | | | 1 | [ | ! W ! ! ! ! ! | ! ! 1 | | | 1 | 1
-dB

--3

} . | (Y4 4 | R
« * .12

| | | | | -0

=12

|
I | ’ ! ’ y ! v v ;::2

Hz

- 10k

-1k

9/9/15 PHY 103: Physics of Music


http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

Building Up a Sawtooth

p In this 10 s clip we will hear a sawtooth waveform
being built up from its harmonic partials

p Notice how the higher terms make the sawtooth
sound increasingly shrill (or “bright”)

. bt bt Al ) Ml ittt Bt A i b i i
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Building Up a Sawtooth

p In the second clip we hear the sawtooth being built
up from its highest frequencies first

p The sound of the sawtooth is clearly dominated by
the fundamental frequency

9/9/15 PHY 103: Physics of Music 23



power [dB]

Square Wave

p Which harmonics are present in the square wave!
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power [dB]

Triangle Wave

p Which harmonics are present in the triangle wave!
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power [dB]

Sawtooth Wave

p Which harmonics are present in the sawtooth wave?
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Sampling and Digitization

p When we digitize a waveform we have to take care
to make sure the sampling rate is sufficiently high

p If we don’t use sufficient sampling, high-frequency
and lower-frequency components can be confused

p This is a phenomenon called aliasing
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Sampling Rate and Fidelity

p Song from start of the class with 44 kHz sampling
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p Same song, now with 6 kHz sampling rate. What is
the difference (if any)?
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Nyquist Limit

p If you sample a waveform with frequency fs, you are
guaranteed a perfect reconstruction of all components up to

fo/2

p So with 44 kHz sampling, we reconstruct signals up to 22 kHz
p With 6 kHz sampling, we alias signals >3 kHz
p What is the typical frequency range of human hearing! Does

this explain the difference in what you heard?
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Fast Fourier Transform (FFT)

p The Adobe Audition program (and it’s freeware version
Audicity) will perform a Fourier decomposition for you

p On the computer we can’t represent continuous
functions; everything is discrete

p The Fourier decomposition is accomplished using an
algorithm called the Fast Fourier Transform (FFT)

® Works really well if you have N data points, where N
is some power of 2N=2X k=0,1,2,3,...

® |f Nis not a power of two, the algorithm will pad the
end of the data set with zeros
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power [dB]

Calculating the FFT

p When you calculate an FFT, you have freedom to
play with a couple of parameters:

® The number of points in your data sample, N

® [he window function used

Three 8-point Hann window functions

0
Triangle Window

—— Blackman-Harris Window
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power [dB]

Effect of FFT Size

p Larger N = better resolution of harmonic peaks
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Uncertainty Principle

p Why does a longer data set produce a better
resolution in the frequency domain!?

p Time-Frequency Uncertainty Principle:
At-Af ~1

N

Localization of measurement in time Localization of measurement in frequency

p Localizing the waveform in time (small N, and therefore
small At) leads to a big uncertainty in frequency (Af)

p Localizing the frequency (small Af) leads means less
localization of the waveform in time (large At)
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Effect of Window Function

power [dB]

p Certain windows can give you better frequency
resolution
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Windowing

p Why do we use a window function at all?

® Because the Fourier Transform is technically defined for

9/9/15

periodic functions, which are defined out to t = + o0

We don’t have infinitely long time samples, but truncated
versions of periodic functions

As a result, the FFT contains artifacts (sidebands) because
we've “chopped off” the ends of the function

The window function mitigates the sidebands by going
smoothly to zero in the time domain

Thus, our function doesn’t drop sharply to zero at the
start and end of the sample, giving a nicer FFT
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Window Examples

p Time and frequency behavior of common windows:

Olli Niemitalo, commons.mediawiki.or
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Summary

p The partials present in a complex tone contribute to the timbre
of the sound

® Partials can be harmonic (integer multiples of the
fundamental frequency) or inharmonic

p The high-frequency components affect the brightness of a sound

p Any reasonably continuous periodic function can be expressed
in terms of a sum of sinusoidal functions (Fourier series)

p The spectrograms we have been looking at are a discrete
calculation of the Fourier components of signals (FFT)

p You can play with the window function and size N of your FFT
to improve the frequency resolution in your spectrograms
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