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Properties of Waves

‣Wavelength: λ, length to repeat peak-peak (trough-trough)

‣ Period: τ, time to repeat one cycle of the wave (seconds)

‣ Phase: position within the wave cycle (a.k.a. phase shift or offset)  

‣ Frequency: f = 1/τ, units of 1/sec (Hertz).  Also: ω = 2πf = 2π/τ

‣Wavenumber: k = 2π/λ, in units of 1/meter (“spatial frequency”)

‣ Velocity: v = λf, in units of length/time

‣ Amplitude: A.  Energy: E ~ (Amplitude)2
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Behavior of Waves
‣ Behavior typical of waves:

• Reflection: a wave strikes a surface and bounces off

• Refraction: when a wave changes direction after 
passing between two media of different densities

• Diffraction: the bending and spreading of waves around 
an obstacle, often creating an interference pattern

• Polarization: the orientation of the oscillation of 
transverse waves

‣ Polarization is not important in acoustics.  Why is that?
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Transverse & Longitudinal Waves
‣ Sound waves are longitudinal pressure waves; 

oscillation occurs along the direction of propagation
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Waves on a String
‣ Suppose we have a rope of length L, and L is so long that, 

for now, we don’t worry about the ends flopping around

‣We shake and vibrate the rope, sending pulses traveling 
down its length

‣What are the properties of the wave on this rope?  It’s 
speed, its wavelength, etc.?
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Waves on a String
‣ Imagine a little piece of the string.  It’s under tension, 

i.e., it feels pulling forces T1 and T2 at each end that 
try to move the piece up or down
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Fy = mpieceay = −T2y −T1y∑
        = −T2 sinβ −T1 sinα

Newton’s 2nd Law: force on
piece of rope with mass mpiece
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Waves on a String
‣We also need to sum forces in the x direction:
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Fx = mpieceax = T2x −T1x∑
        = T2 cosβ −T1 cosα
        ≈ T −T
        = 0

Forces along x direction sum
to zero; the piece of rope
doesn’t move side-to-side
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Waves on a String
‣ Suppose the density of the rope (also known as the 

“mass per unit length”) is ⍴ = mtotal/L

‣ The length of the piece of rope is Δx, so mpiece= ⍴Δx
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Fy = mpieceay = ρΔx ⋅
dvy
dt

= ρΔx∑ ⋅ d
2y
dt 2

= −T2 sinβ −T1 sinα
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The Wave Equation
‣With a few more substitutions (see overflow slides) 

Newton’s second law reduces to the expression

‣ This is the wave equation that describes the motion of the 
piece of rope vs. time t and position x.  It has two solutions:

‣ These are traveling waves moving to the left or right!
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d 2y
dx2 = ρ

T
⋅ d

2y
dt 2 = 1

v2
d 2y
dt 2 ,      where  v = T

ρ

y(x,t) = Asin(kx ±ωt)

= Asin 2π
λ

(x ± vt),      where v = λ f = T
ρ
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A Vibrating String
‣ In a musical instrument with a vibrating string, the 

endpoints are fixed so that they don’t vibrate

‣ Example: a guitar string is fixed at the nut and bridge 
and will not vibrate at those points

‣What does the wave on the string look like in this 
case?
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The Plucked String
‣ If the string is fixed at both ends, it’s going to look 

something like this when you pluck it:
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L = λ1/2

L = λ2

L = 3λ3/2

L = 2λ4
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Standing Waves
‣ These patterns are called standing waves

‣ You can construct a standing wave from a superimposed 
combination of traveling waves moving in both directions

‣ So our earlier conclusions (v = λf = √T/⍴) are still valid and 
can be used to describe the fixed string!
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Producing Standing Waves
‣We can create large standing waves in a string by 

driving it with an oscillating motor
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(c) UC Davis

http://www.apple.com
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Terminology
‣ Nodes: points where the string is fixed (or held) and 

cannot vibrate

‣ Antinodes: points of strongest vibration/oscillation 
along the length of the string
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Harmonics/Overtones

15

L = λ/2 f1 = v / λ = v/2L

L = λ f2 = v/L = 2f1

L = 3λ/2 f3 = 3v/2L = 3f1

L = 2λ f4 = 2v/L = 4f1

L = 5λ/2 f5 = 5v/2L = 5f1

L = 3λ f6 = 3v/L = 6f1
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Harmonics/Overtones
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‣ An open string will 
vibrate in its 
fundamental mode and 
overtones at the same 
time

‣ True not just for strings, 
but all vibrating objects

‣We will demonstrate the 
presence of overtones 
by making a spectrogram 
of a plucked string
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Harmonics/Overtones
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‣ If a string is touched at 
its midpoint, it can only 
vibrate at frequencies 
with a node at the 
midpoint

‣ The odd-integer 
harmonics (including the 
fundamental frequency) 
are suppressed

‣ Question: what will the 
note sound like?
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Notes and String Length
‣ Mathematical relationship 

between string length and pitch

‣When you halve the string, the 
pitch goes up by one octave

‣ Cutting the string in half means 
the frequency goes up by 2

‣ One octave = doubling of the 
frequency of the note

‣ Let’s try it out with a couple of 
monochords…
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length L,
frequency f

length L/2,
frequency 2f
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Simple Harp
‣ Music Maker “lap harp” for 

teaching music to children

‣ Very simple layout with 9 
identical strings

‣ Question: does the string length 
drop by half as we go up in 
octaves?  Let’s measure it…

19
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Simple Harp
‣ Music Maker “lap harp” for 

teaching music to children

‣ Very simple layout with 9 
identical strings

‣ Question: does the string length 
drop by half as we go up in 
octaves?  Let’s measure it…

‣ Remember: f1 = v/λ1 = √(T/⍴)/2L

‣ String tension (and density) 
matter as well as length!
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Piano Strings
‣ Instrument makers take 

advantage of the dependence 
of f on T and ⍴ as well as L

‣ About 20T of tension (all 
strings combined) in a grand 
piano

‣ Note: the bass strings are 
much thicker and denser 
than the treble strings

‣ Otherwise, the frame would 
need to be 100s of feet long

20



PHY 103: Physics of Music9/2/15

Playing the Harp
‣ If we pluck G4, what do you expect to observe?
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Playing the Harp
‣ If we pluck G4, what do you expect to observe?

‣ In fact, this is the true waveform:
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Spectrogram of the Harp
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Spectrogram of the Harp
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Note the rapid decay of the signal.
Why does this happen?
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Making Pure Tones
‣ If you don’t have an open speaker and function generator, 

you can go here:

• http://plasticity.szynalski.com/tone-generator.htm
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http://plasticity.szynalski.com/tone-generator.htm
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Spectrum of a Pure Tone
‣ Pure sine wave looks like a spike at one frequency
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Spectrum of Pure G5
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‣ Pure sine wave looks like a spike at one frequency

Noise Noise
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Spectrum of Pure G6
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‣ Pure sine wave looks like a spike at one frequency

Noise Noise



PHY 103: Physics of Music9/2/15

Pure G4, G5, G6
‣ Note the integer relationship between the pure tones
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fG4
2fG4 

4fG4 = 2fG5

3fG4 
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Power Spectrum of G4
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Spectrum of G4 and G5
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Spectrum of G4, G5, & G6
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Harp and Pure Tone: G4
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Harp and Pure Tone: G5
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Harp and Pure Tone: G5
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“Cleaning” the Spectrogram
‣We can use Audition to remove the overtones from 

the second “pluck” in the spectrogram

‣What do you think the second pluck will sound like 
after cleaning?
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Summary
‣Waves on a string move with velocity v = √T/⍴

• T is the string tension and ⍴ is the density

‣ Open strings fixed at both ends will exhibit standing waves

• Increasing number of higher harmonics or overtones

• Integer multiples of fundamental tone with f1=√(T/⍴)/2L

• Nodes: positions where the string doesn’t oscillate

• Antinodes: positions of maximum oscillation

‣When a string is plucked or driven, all of the overtones can 
be excited simultaneously.  But only some are dominant and 
determine the timbre
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Wave on a Rope: Geometry
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ρΔx ⋅ d
2y
dt 2

= −T2 sinβ −T1 sinα

T2x = T2 cosβ ≈ T
T1x = T1 cosα ≈ T
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Deriving the Wave Equation
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ρΔx ⋅ d
2y
dt 2

= −T2 sinβ −T1 sinα

ρΔx
T

⋅ d
2y
dt 2

= − T2 sinβ
T

− T1 sinα
T

≈ − T2 sinβ
T2 cosβ

− T1 sinα
T1 cosα

= − tanβ − tanα

= − dy
dx x

− dy
dx x+Δx

⎛
⎝⎜

⎞
⎠⎟

ρ
T
⋅ d

2y
dt 2

= 1
Δx

dy
dx x+Δx

− dy
dx x

⎛
⎝⎜

⎞
⎠⎟
= d

2y
dx2

divide both sides by T

substitute expression for
x components of T

Note that the tangents
are equal to the slope
at either end

group terms and simplify

forces on rope segment


