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Properties of Waves

| «—— Wavelength ———| Velocity of
: A propagation
Amplitude o

f = frequency
T = Period

P Wavelength: A, length to repeat peak-peak (trough-trough)

p Period: T, time to repeat one cycle of the wave (seconds)

p Phase: position within the wave cycle (a.k.a. phase shift or offset)
p Frequency:f = |/T, units of |/sec (Hertz). Also: w = 211f = 2TT/T
P Wavenumber: k = 2TT/A, in units of |/meter (“spatial frequency”)
p Velocity: v = Af, in units of length/time

p Amplitude: A. Energy: E ~ (Amplitude)2
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Behavior of Waves

p Behavior typical of waves:
® Reflection: a wave strikes a surface and bounces off

® Refraction: when a wave changes direction after
passing between two media of different densities

® Diffraction: the bending and spreading of waves around
an obstacle, often creating an interference pattern

® Polarization: the orientation of the oscillation of
transverse waves

p Polarization is not important in acoustics. Why is that?
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Transverse & Longitudinal Waves

p Sound waves are longitudinal pressure waves;
oscillation occurs along the direction of propagation

Traveling Plane Wave
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Waves on a String

p Suppose we have a rope of length L, and L is so long that,
for now, we don’t worry about the ends flopping around

p We shake and vibrate the rope, sending pulses traveling
down its length

P What are the properties of the wave on this rope? It’s
speed, its wavelength, etc.?
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Waves on a String

p Imagine a little piece of the string. It's under tension,
i.e., it feels pulling forces T| and T at each end that
try to move the piece up or down

EF =M@, =—1,, — T, Ve Newton’s 2nd Law: force on
=-T,sinf-T, sinx piece of rope with mass mpiece
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Waves on a String

P We also need to sum forces in the x direction:

ZF mplece x_Tx_lex
Forces along x direction sum
=T,cos—T, cosox .
to zero; the piece of rope

] T:L// doesn’t move side-to-side
=0
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Waves on a String

p Suppose the density of the rope (also known as the
“mass per unit length”) is p = Moral/L

p The length of the piece of rope is Ax, so Mpiece= pLAx

2B = myea, =
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The Wave Equation

p With a few more substitutions (see overflow slides)
Newton’s second law reduces to the expression
d_zy_ o d’y 1 d’y T

= = ., Where v= |—
dx> T dt* v dt’ \ p

p This is the wave equation that describes the motion of the
piece of rope vs. time t and position x. |t has two solutions:

y(x,t)=Asin(kx £ wt)

—
:Asinz—n(xivt), where v=Af = L
A \p

p These are traveling waves moving to the left or right!
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A Vibrating String

p In a musical instrument with a vibrating string, the
endpoints are fixed so that they don’t vibrate

p Example: a guitar string is fixed at the nut and bridge
and will not vibrate at those points

Scale Length

Distance from Nut to Bridge

Bridge Nut

Neck
Body v Headstock

p What does the wave on the string look like in this
case!
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The Plucked String

p If the string is fixed at both ends, it’s going to look
something like this when you pluck it:

- | L=M\/2

| Ao | L = >\2

| A | L =3\3/2
l—hz—l

Jol o T ek [ = 2)\
]|— Mg — [ *
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Standing Waves

p These patterns are called standing waves

—— >

. o —
—

p You can construct a standing wave from a superimposed
combination of traveling waves moving in both directions

p So our earlier conclusions (v = Af = +/T/p) are still valid and
can be used to describe the fixed string!
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Producing Standing Waves

p We can create large standing waves in a string by
driving it with an oscillating motor

(c) UC Davis
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http://www.apple.com

Terminology

p Nodes: points where the string is fixed (or held) and
cannot vibrate

p Antinodes: points of strongest vibration/oscillation
along the length of the string

.
—c—
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Terminology

p Nodes: points where the string is fixed (or held) and
cannot vibrate

p Antinodes: points of strongest vibration/oscillation

along the length of the string
Nodes

S
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Harmonics/Overtones
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lH=v/\A=vV?2L

f2 = V/L = 2f1

fz = 3v/2L = 3f

fa = 2vVIL = 41

f5 = 5V/2L = 5f1

f6 = 3V/L = 6f1



Harmonics/Overtones

? p An open string will
fo= 2f vibrate in its
2 fundamental mode and
f = nf, overtones at the same
time

W

p True not just for strings,
but all vibrating objects

p We will demonstrate the
presence of overtones
by making a spectrogram

LK KKK KD 6 of a plucked string

9/2/15 PHY 103: Physics of Music |6

o

QG
il
000



Harmonics/Overtones

its midpoint, it can only

o vibrate at frequencies

with a node at the
midpoint

7)3 p If a string is touched at

p The odd-integer
o o< > > 4 harmonics (including the

fundamental frequency)
are suppressed

p Question: what will the

ee‘ooe 0 note sound like?

9/2/15 PHY 103: Physics of Music |7




Notes and String Length

ﬁiz p Mathematical relationship
(i ; between string length and pitch

. P When you halve the string, the
j frequency 2f pitch goes up by one octave

A p Cutting the string in half means
e the frequency goes up by 2
frequ[ncﬁ p One octave = doubling of the
______ frequency of the note

p Let’s try it out with a couple of
monochords...
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Simple Harp

p Music Maker “lap harp” for
teaching music to children

p Very simple layout with 9
identical strings

\ p Question: does the string length
drop by half as we go up in

octaves! Let’s measure it...
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Simple Harp

p Music Maker “lap harp” for
teaching music to children

p Very simple layout with 9
identical strings

— \ p Question: does the string length
S drop by half as we go up in
= octaves! Let’s measure it...

ﬁff“?% = p Remember:f; = viA; = +/(T/p)/2L
- f‘: p String tension (and density)

matter as well as length!

9/2/15 PHY 103: Physics of Music 19



Piano Strings

R p Instrument makers take

advantage of the dependence
of fon T and p as well as L

p About 20T of tension (all

strings combined) in a grand
piano

p Note: the bass strings are
much thicker and denser
than the treble strings

o | ‘ | .
e / p Otherwise, the frame would

Z g 4 need to be 100s of feet long
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Playing the Harp

p If we pluck G4, what do you expect to observe!
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Playing the Harp

p If we pluck G4, what do you expect to observe!

JAVAVAVAVAVAVAVAVA

p In fact, this is the true waveform:
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Spectrogram of the Harp

frequency

fundamental

time
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Spectrogram of the Harp

2 overtones

frequency

fundamental

time
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Spectrogram of the Harp

Note the rapid decay of the signal.
Why does this happen?

9/2/15

frequency

overtones

fundamental

time
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Making Pure lTones

p If you don’t have an open speaker and function generator,
you can go here:

® http://plasticity.szynalski.com/tone-generator.htm

Online Tone Generator

PLAY
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power [dB]

Spectrum of a Pure Tone

p Pure sine wave looks like a spike at one frequency
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power [dB]
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Spectrum of Pure G5

p Pure sine wave looks like a spike at one frequency
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power [dB]

Spectrum of Pure Gé6

p Pure sine wave looks like a spike at one frequency
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power [dB]
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Pure G4, G5, G6

p Note the integer relationship between the pure tones
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power [dB]

Power Spectrum of G4

— (G4 (391.995 Hz)

_120_ . “lmll “‘n me l u il ‘L bl s,

0 1000 2000 3000 4000 5000
frequency [Hz]

9/2/15 PHY 103: Physics of Music 28



power [dB]

Spectrum of G4 and G5
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Spectrum of G4, G5, & G6

—— (4 (391.995 Hz)
—50¢} —— (5 (783.991 Hz) -
—— (06 (1567.98 Hz)

power [dB]

W' /\

_120 M0 1T (AT JHJ A TR '|!.l."|' "0 B b s,
0 1000 2000 3000 4000 5000
frequency [Hz]

9/2/15 PHY 103: Physics of Music 30



power [dB]

Harp and Pure Tone: G4
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power [dB]

Harp and Pure Tone: G5
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power [dB]

Harp and Pure Tone: G5
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“Cleaning” the Spectrogram

p We can use Audition to remove the overtones from
the second “pluck” in the spectrogram

p What do you think the second pluck will sound like
after cleaning!?
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Summary

) Waves on a string move with velocity v = +/T/p

® T is the string tension and p is the density

p Open strings fixed at both ends will exhibit standing waves

® |ncreasing number of higher harmonics or overtones

® Integer multiples of fundamental tone with fi=+/(T/p)/2L
® Nodes: positions where the string doesn’t oscillate
® Antinodes: positions of maximum oscillation

P When a string is plucked or driven, all of the overtones can
be excited simultaneously. But only some are dominant and
determine the timbre
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Wave on a Rope: Geometry

d’ . .
,()Ax-zzy:—T2 sin B —T, sino

T, =T,cosB=T
I, =T cosa=T
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Deriving the Wave Equation

2
PAX - Z’ =-T,sin3—T, sinc forces on rope segment
t°
pAx d°y  T,sinfi T sina divide both sides by T
T dr’ T T
 T,sinf Tsinx substitute expression for
T,cosf8 T cosc x components of T
=—tanf —tanx
Note that the tangents
— dy| _dy are equal to the slope
dx|. dx| .. at either end

2 2
; : Z Z — Alx(;{y _§ j: % group terms and simplify
[ X x+Ax X X X
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