

PHY 103 Auditory Illusions

Segev BenZvi Department of Physics and Astronomy University of Rochester

Reading

- Reading for this week:
 - Music, Cognition, and Computerized Sound: An Introduction to Psychoacoustics by Perry Cook

Auditory Illusions

- Pitch
- Scale
- Beat
- Timbre

Rising Pitch

- Listen to this tone. What happens to the pitch from start to finish?
- Now, listen to the **same exact clip** once again. I promise you it's the same audio file, played in the same way
- What do you hear? How is this possible?
- Let's try a similar clip, this time with continuous notes

Shepard Tone

The clips you heard are examples of Shepard tones (after Roger Shepard, cognitive scientist)

- The tone is actually a set of sinusoidal partials one octave apart, with an envelope that goes to zero at low and high frequencies
- Increase frequencies by a semitones, giving impression of rising pitch. After 12 semitones, we arrive back where we started

12/27/16

The Shepard Scale

The tones in the Shepard scale are shown at left, and the intensity envelope is shown on the right

- Overlapping tones are one octave apart
- We can't hear the tones at the ends, so it's hard to perceive the repetition point in the pitch

Shepard Tone in Pop Culture

The Dark Knight, Warner Bros. (2008)

Richard King, Sound Designer (*The Dark Knight*), *LA Times*, February 2009: "I used the concept of the Shepard tone to make the sound appear to continually rise in pitch. The basic idea is to slightly overlap a sound with a distinct pitch (a large A/C electric motor, in this case) in different octaves. When played on a keyboard, it gives the illusion of greater and greater speed; the pod appears unstoppable."

Descending Shepard Tone

- No reason that the sequences has to step up by semitones
- We can also create an infinitely descending sonic staircase

A little depressing?

12/27/16

Falling Bells Illusion

- Bells sound as if they are falling through space, and the pitch drops continuously
- Actually, the pitch ends higher than where it started

Same trick as the Shepard scale, plus playing a bit with stereo

Filling in Melodies

- Start with a set of tones and then insert silences
- We don't perceive the silences, but we do perceive the tones when they restart

We interpret the result as a clear melody. Do you hear it?

Reflection in Composition

- Bartók, Mikrokosmos Vol. 6, No. 141, "Subject and Reflection"
- Two melodies are played: one goes up while the other goes down, and vice versa
- Can you pick out the reflective tonal symmetry without seeing the music?

Reflection in Composition

Reflection in Composition

Is the reflective tonal symmetry easy for you to see in the spectrogram?

Is it easier for you to see the reflective tonal symmetry rather than hear it?

Time Reversal

- There is also a long tradition of arranging music in so-called crab canons (or retrograde canons)
- Two lines are arranged complementary and backwards, like a palindrome

Example: A Musical Offering by Bach

Sensory Integration Illusion

McGurk Effect: "hearing" with the visual system first!

Gap Transfer Illusion

Long ascending glide and short descending glide tones cross

A "bounce" is often perceived in the gliding tones

Gap Transfer Illusion (2)

Pattern is disrupted by a 0.1 second gap, first in the descending glide, then in the ascending

People tend to perceive these as identical

Split-Off Illusion

An ascending and descending glide tone overlap for 0.2 s

Listeners tend to perceive one long tone which rises and falls, with a short tone in the center due to the termination of the ascending glide tone

Split-Off Illusion (2)

• Two glide tones bounce off each other

Perceptually, it sounds more like the glide tones are crossing instead of bouncing

Split-Off Illusion (3)

"Apparent Motion"

- If tones are far apart and alternated slowly you can track a melodic pattern
- But as the speed increases their order becomes indeterminate. Eventually you just hear beeps and boops. Example: yodeling

Yodeling Demo: Perry R. Cook Sample 33

Phantom Melodies

Frühlingsrauschen ("Rustle of Spring") played fast and at I/4 speed (exit slideshow)

Fast: arpeggios blend together into a phantom melody. Slow: we hear the notes separately without the melody

Perceptual Groupings

Fast rhythm in presence of timbre variations leads to sounds joining into perceptual groupings

Ex: <u>Piano Phase</u>, Steve Reich

.= ca. 72

Repeat each bar approximately number of times written. / Jeder Takt soll approximativ wiederholt werden entsprechend der angegebenen Anzahl. / Répétez chaque mesure à peu près le nombre de fois indiqué.

PHY 103: Physics of Music

Scale Illusion

Our brains like to group similar notes together, and will do so when separate melodies are played

Effect discovered by Diana Deutsch (Psychologist, UCSD) in the 1970s

Timbre and Auditory Streams

- Two melodies played simultaneously can produce a single emergent melody
- Example: auditory streaming in African xylophones

- However, if there is a large difference in timbre between the xylophones, the combined melody does not emerge. Similarly if there is an octave difference in pitch
- Instead, you just hear the two instruments separately

Deutsch's Tritone Paradox

- Listen to the following tones.
- Are they ascending or descending in pitch?
- Why do you think so?

Tritone Paradox

- A tritone is two pitches 1/2 an octave apart (e.g., C to F#)
- Musicians often disagree on whether or not the pitch is ascending or descending

Issue: our brains have a preference for listening to the higher or lower tone. It differs from person to person