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Reading
‣ Heller, Ch. 7

‣ Fletcher and Rossing, Ch. 9 and 12 (advanced)
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Midterm Exam
‣ In class, Thursday October 20

‣Will be largely conceptual with some basic 
arithmetic and logarithms

‣ Topics:

• Properties of waves

• Normal modes of strings and air columns

• Scales and tuning systems

• Loudness and amplification
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Need for Amplification
‣ Instruments produce sound by vibrating some element 

(a string, a drumhead, a reed, your lips, …)

‣ There is typically very little energy in this vibration

• For plucked string, total energy is E = 1/4 μωn
2An

2L

• First E string on a guitar: ω1 = 2π × 329.63 Hz

• μ = 0.4 g/m

• L = 0.6 m, A = 3 mm

• Energy is about 2 mJ.  Energy required to lift an apple 
(100 g) vertically by 1 meter against gravity: 1 J
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Amplification
‣ In order to actually hear an instrument and project 

its sound we have to amplify it

‣ Acoustic resonators have been used for thousands 
of years for this purpose

‣ Now we can couple instruments to electroacoustic 
transducers, amplifiers, and loudspeakers

‣ Before we get into acoustic amplification, let’s talk 
about sound power (a physical quantity) and 
loudness (a perceived quantity)…
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Relative Power: dB
‣ Energy in an oscillating wave: E ~ A2 [Joules]

‣ Power: P = energy per unit time [Joule/sec = Watts]

‣ Intensity: I = power per unit area [W/m2]

‣ Relative sound level between two sounds is given in 
decibels [dB] 

• Sound 1 has power P1 and sound 2 has power P2

• Relative difference: 10 log(P2 / P1) dB

• P2 = 2 P1 → 10 log 2 = 3 dB difference
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The Decibel Scale
‣ Sample: noise decreased in steps of 6 dB

‣ Sample: noise decreased in steps of 3 dB

‣ Sample: speaker moving away from microphone.  The sound 
intensity decreases as 1/r2, where r is the distance to the 
microphone
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Image from hyperphysics

Samples from Auditory Demonstrations
by Houtsma, Rossing, and Wagenaars
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Time-Averaged Power
‣ Note: when we talk about power in this context, we 

don’t mean the instantaneous power at one time t

‣We are talking about the time-averaged power of an 
oscillating pressure wave
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p(t) = Acos(ωt)
P(t)∝ p(t)2

Pavg = 1
τ

P(t)dt
0

τ

∫ ∝ 1
τ

A2 cos2(ωt)dt
0

τ

∫ = A2 / 2

∝Pmax / 2
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Sound Intensity Reference
‣ Decibels measure a relative power (or intensity) ratio 

between two sounds

‣ So when we talk about a sound being 60 dB (for 
example), what is the reference point we are using?

‣ Remember that sound corresponds to pressure 
variations propagating through air in longitudinal waves

‣ Reference point: p0 = 0.02 μPa or about 2×10-10 atm

‣ So you can think of dB as the amplitude variation of 
sounds (in pressure) relative to this reference point

• sound level = 10 log(p / p0)2 = 20 log(p / p0) dB
9
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Power of Common Sounds
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Sound Source Sound Level Intensity
Hearing threshold 0 dB 1 pW/m2

Whispering in library, 2 m distance 30 dB 1 nW/m2

Normal conversation, 1 m distance 60 dB 1 μW/m2

City traffic noise inside a car 85 dB
Hearing loss threshold (sustained exposure): 90 dB 1 mW/m2 

Jackhammer at 20 m distance 95 dB
Hand drill 98 dB
Power mower 107 dB
Rock concert 115 dB

Pain threshold: 120 dB 1 W/m2 

Pneumatic riveter at 1 m 125 dB
Permanent damage threshold (short exposure)

Jet engine at 30 m 140 dB 100 W/m2

12 gauge shotgun blast 165 dB
Death of hearing tissue 180 dB 1 kW/m2

Loudest undistorted sound at 0C, 1 atm 
pressure

194 dB
From gcaudio.com

http://gcaudio.com
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What Happens >194 dB?
‣ 194 dB corresponds to a pressure amplitude of 1 atm

‣ Sound levels >194 dB require sound pressures >1 atm

‣ Sound waves become distorted (like a shock wave), with 
valleys clipped at 0 Pa (vacuum)
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Sound Safety
‣ OSHA guidelines for sound level exposure:

‣ Q: how did I go from dB to intensity difference?
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Sound Level [dB] Power/Intensity difference Exposure Time
90 — 8 hr/day
92 1.58 6 hr/day
95 3.16 4 hr/day
97 5.01 3 hr/day
100 10 2 hr/day
102 15.85 90 min/day
105 31.62 60 min/day
110 100 30 min/day
115 316.23 <15 min/day

From gcaudio.com

http://gcaudio.com
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Combining Sound Levels
‣ Suppose you have a 70 dB speaker and you add a 

second 70 dB speaker.  How loud is the combined 
set?

‣ Consider two possible cases:

1. Coherence: signals have same frequency and are in 
phase

2. Incoherence: signals have different frequencies
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Combining Sound Levels
‣ If the speakers are in phase (coherent) where you 

are sitting, then the amplitudes of the waves add

‣ Power ~ Energy ~ Amplitude2

‣ Average power is 4x the power of one signal (A2/2)
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p(t) = Acos(ωt)
P(t)∝[p(t)+ p(t)]2

= 4A2 cos2(ωt)

Pavg = 1
τ

P(t)dt =
0

τ

∫ ∝ 2A2
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Combining Sound Levels
‣ If the two speakers aren’t playing the same frequency, 

they are incoherent and the calculation changes

‣ Remember that we’re dealing with time-averaged 
power when we combine the signals:
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p1(t) = Acos(ωt),     p2 (t) = Acos(Ωt)
P(t)∝[p1(t)+ p2 (t)]2

= A2 cos2 (ωt)+ A2 cos2 (Ωt)+ 2Acos(ωt)cos(Ωt)

Pavg ∝ A2

time average: A2/2 time average: A2/2 time average: 0

2x the power of 1 signal alone
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Combining Sound Levels
‣ Coherent case:

• Difference in sound level = 10 log (4) = 6 dB

• Therefore, the total sound power of the two 
speakers is 70 dB + 6 dB = 76 dB

‣ Incoherent case:

• Different in sound level = 10 log (2) = 3 dB

• Therefore, the total sound power of the two 
speakers is 70 dB + 3 dB = 73 dB
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Loudness Perception
‣ dB gives us an objective measurement of sound level power, 

but we don’t perceive loudness equally at all frequencies
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frequency [Hz]
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dB and Phons
‣ Phon: psychophysical 

loudness measure

‣ At 1 kHz, phon scale = dB

‣ Everywhere else, phons are 
tuned to subjective response

‣ Equal-loudness curve: at a 
given frequency, what dB 
sound produces same 
loudness w.r.t. 1 kHz?

‣We have a strong frequency-
dependent response to 
sounds
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frequency [Hz]
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Amplification by Reflection
‣ If you hold a sound source next to a wall, the waves 

will be reflected off the wall back at you

‣ You can get amplification, as if there were a second 
source behind the wall
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From Why You Hear What You Hear, E. Heller
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Reflection from a Corner
‣ If wavelength is large compared to the distance 

between the source and its N-1 images, the power in 
the physical region goes up by N2 
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Reflection from a 30° Wedge
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Amplification: the Guitar
‣ A guitar is a fretted board of strings coupled to two 

flat vibrating panels
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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Soundboard Bracing
‣ Designs for bracing a guitar soundboard: Torres, 

Bouchet (France), Ramirez (Spain), crossed bracing

‣ Bracing affects the vibrational modes of the board
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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Guitar Schematic
‣ Different pieces of the guitar resonate in different 

frequency regimes
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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Guitar Plate Modes
‣ Vibrational modes of a guitar plate blank without 

braces
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing

Lines =
nodes

Gaps=
antinodes
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Effect of Braces
‣ Vibrational modes of guitar top plate with traditional 

fan bracing
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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Full Guitar Modes
‣ The whole guitar cavity has vibrational modes that 

are combinations of the modes of the plates and 
sides put together
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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The Piano
‣ The piano also uses an acoustic resonator: the 

soundboard

‣ The soundboard opposes the vertical components of 
the string tension (lots of force: 20 N per string)

‣ Acoustically, it’s also the main radiating component
28

From The Physics of Musical Instruments, N. Fletcher and T. Rossing



PHY 103: Physics of Music10/11/16

Upright Piano Soundboard
‣ An upright piano has a vertically oriented 

rectangular soundboard

‣ Frame members restrict the vibrations to a 
trapezoidal section where the bridges run diagonally
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing
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Upright Piano Modes
‣ Vibrational modes of the upright piano soundboard
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From The Physics of Musical Instruments, N. Fletcher and T. Rossing

Lines =
nodes

Gaps=
antinodes
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Rectangular Membrane Modes
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Courtesy Dan Russell, Grad. Prog. in Acoustics, PSU

1,1 mode 1,2 mode

2,1 mode 2,2 mode
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Horns

32

From Why You Hear What You Hear by Eric Heller
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Horns
‣ Horns are built in a cone + bell shape, usually with the 

width of the cone growing exponentially towards the 
end of the bell

‣ The narrow end of the horn “loads the source”

• Lots of constructive interference of certain 
wavelengths

• Sound is confined to a small space, reducing 1/r2 losses

‣ The wide end of the horn lets all vibrations with 
wavelength < bell diameter escape without strong 
reflections.  Technical: no impedance mismatch
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Ripple Tank Simulation
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Horns in Reverse
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From Why You Hear What You Hear by Eric Heller
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Summary
‣ Decibel scale: logarithmic ratio of sound level power or 

intensity with respect to a reference point

• sound level = 10 log (P1 / P2) dB

‣We perceive loudness differently depending on the 
frequency of the sound

‣ Amplification can be achieved by reflection from a surface, 
if the distance between the surface and sound source is 
much bigger than the wavelength of the sound

‣ In musical instruments, amplification is achieved by coupling 
vibrating elements to a resonator with low impedance — 
sound effectively transmitted into the air
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