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Reading
‣ Hopkin Chapter 3

‣ Berg and Stork Chapter 9
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Musical Structure
‣We’ve talked a lot about the physics of producing 

sounds in instruments

‣We can build instruments to play any fundamental 
tone and overtone series
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Scales
‣ In practice, we don’t do that.  There are agreed-upon 

conventions for how notes are supposed to sound

‣Why is that?  How did those conventions come 
about?  Is there a reason for it?
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What’s a Scale?
‣ A scale is a pattern of notes, usually within an octave

‣ In Western music we use the diatonic scale

‣ This scale contains seven distinct pitch classes and is 
part of a general class of scales known as heptatonic

‣ Doubling the frequency of a tone in this scale requires 
going up by 8 notes: hence the term “octave”
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Basic Terminology
‣ Note combinations are described with respect to 

their position in the scale

‣ Ignore the modifiers “major” and “perfect” for now; 
we’ll come back to those in a few minutes
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Pentatonic Scale
‣ The diatonic scale (and other heptatonic scales) are 

found all over the world, but are not universal

‣ Traditional Asian music is based on the pentatonic scale:

‣ Familiar example of the pentatonic scale: opening of 
“Oh! Susanna” by Stephen Collins Foster
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Pentatonic Scale
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Origins of the Scale
‣Where do these note patterns come from?

‣Why can they be found around the world?
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Neolithic bone flutes (7000 BC), Jiahu, China
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Psychology of Hearing
‣ Our ears interpret musical intervals in terms of ratios

‣ Perfect 4th: interval between two pitches whose 
fundamental frequencies form the ratio 4:3

• Ex: A4 (440 Hz), D5 (586.67 Hz = 4/3 ⨉ 440 Hz)

• Tone sample: 2 s of A4, then 2 s of A4 + D5

10



PHY 103: Physics of Music9/25/16

Psychology of Hearing
‣ Our ears interpret musical intervals in terms of ratios

‣ Perfect 5th: interval between two pitches whose 
fundamental frequencies form the ratio 3:2

• Ex: A4 (440 Hz), E5 (660 Hz = 3/2 ⨉ 440 Hz)

• Tone sample: 2 s of A4, then 2 s of A4 + E5
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Chromatic Scale
‣ The complete scale in an octave is the 12-pitch 

chromatic scale

‣ The 12 pitches are separated by half notes, or 
semitones, the smallest musical interval used in 
Western music.  (Q: what about other traditions?)

‣ Semitones are quite dissonant when sounded 
harmonically; i.e., they don’t sound pleasant
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Dissonant Semitones
‣Why do semitones sound so dissonant?

‣ Look at the waveform produced by playing a pure 
middle C (261.63 Hz) and C# (277.19 Hz)

‣ Significant beating is present; our ears don’t like it

‣ Question: what’s the beat frequency? 
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Origin of Scales and Pitch
‣We like octaves, which are a frequency ratio of 2:1

‣We also like the sound of small integer ratios of 
frequency, e.g., the perfect 5th (3:2)

‣ These kinds of integer ratios tend to show up when 
you tune an instrument by ear, because they “sound 
right.”  Our ears like it when harmonics align due to 
the lack of dissonant beats

‣ However, the manner in which notes are scaled within 
an octave can be pretty arbitrary

‣ Even the pitch of notes has evolved over time
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Absolute Pitch
‣ In the baroque period, A = 415 Hz was the standard

‣ Bach used 415 Hz.  Handel used 422.5 Hz.  The 
international tuning standard of A4 = 440 Hz was 
widely adopted around 1920
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Overtones of the String
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Origin of the Diatonic Scale
‣ Start with the tonic of the string (f) and go up by an 

octave: you get a doubling of the frequency (2f)

‣ An octave + 5th gives the string’s third harmonic (3f)

‣ Drop the octave + 5th note down by one octave to 
the first 5th and the frequency is divided by two (3f/2)

‣ Hence, the perfect fifth is in a 3:2 ratio with the tonic

‣ Pythagorean tuning: build up the chromatic scale of 12 
notes by climbing up the scale by 5ths and down by 
octaves
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Pythagorean Tuning
‣ The Pythagorean tuning system is one of the first 

theoretical tuning systems in Western music (that we 
know about)

‣ The Pythagorean scale appeals to symmetry: you can 
construct the chromatic scale in terms of simple integer 
ratios of a fundamental frequency
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Pythagorean Temperament
‣ Go up by 5ths and down by 8ves to fill the scale:
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Note Frequency Relation to Tonic Ratio
C4 tonic (1.000) 1.0000
G4 3/2·C4 1.5000

D5 → D4 1/2·D5 = 1/2·(3/2·G4) = 1/2·(3/2·(3/2·C4) = 9/8·C4 1.1250
A4 3/2·D4 = 27/16·C4 1.6875

E5 → E4 1/2·E5 = 1/2·(3/2·A4) = 81/64·C4 1.2656
B4 3/2·E4 = 3/2·(81/64·C4) = 243/128·C4 1.8984

B3 → F4# 3/2·(1/2·B4) = 3/4· (243/128·C4) = 729/512·C4 1.4238
… … …

Berg and Stork, Ch. 9
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Circle of Fifths
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‣ Another 
visualization of the 
construction of the 
chromatic scale

‣ Gives the major 
and minor keys of 
the 12 pitches
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Circle of 5ths in Composition
‣ Popular music example: Take a Bow by Muse

‣ Starts in the key of D, then goes to G, C, F, etc.

‣ Dramatic political song, lyrics are a bit… incendiary. 
Ignore them, listen for the key changes

22



PHY 103: Physics of Music9/25/16

Issues with Pythagorean Scale

‣ The Pythagorean tuning system is pretty elegant

‣ Given just a tonic and the 3:2 perfect 5th and 2:1 
octave ratios, we can construct the frequencies of all 
12 notes in the chromatic scale

‣ Unfortunately, the major third (81:64) and minor 
third (32:27) are pretty dissonant in this system

• Triads?

• Chords?
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The Wolf Interval
‣ If you go up by a 5th 12 times, you expect to be 7 

octaves above the starting point

‣ But (3/2)12 ≅129.74, and 27 = 128; so the circle of 
fifths doesn’t fully close in Pythagorean tuning

‣ One of the 5th intervals must not match the 
prescribed frequency ratio.  Therefore, there is a 
dissonant beat (the interval “howls”)
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Perfect 5ths and 3rds
‣ Perfect 5th with frequency ratio 3:2

‣Wolf 5th (between C# and A♭), frequency ratio is 

1:218/311=1.4798

‣ Perfect 3rd with frequency ratio 5:4

‣ Pythagorean 3rd with frequency ratio 1.2656

‣ Sawtooth waves used to include overtones and make 
the dissonance in Pythagorean tuning more obvious 
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Just Temperament
‣ A tuning system in which all the frequencies in an 

octave are related by very simple integer ratios is said 
to use just intonation or just temperament

‣ Frequency ratios obtained in the most basic form of a 
major scale, relative to the tonic, when using just 
intonation, are:

• 1:1,   9:8,   5:4,   4:3,   3:2,   5:3,   15:8,   2:1

‣ Can get this by tuning the 3rds and allowing some of 
the 5ths to be slightly out of tune

‣ Chords no longer dissonant; richer music is possible
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Issues with Just Temperament

‣ Unfortunately, simple frequency ratios don’t solve 
the problems of dissonant chords

‣ As in the Pythagorean system, there are certain keys 
and chords that are unplayable in just temperament

‣With an integer frequency ratio, tuning errors have 
to accumulate in certain chords

‣ Changing keys is also tricky; you have to be careful 
about how frequencies are calculated
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Equal Temperament
‣ Equal temperament is an attempt to get away from 

the problem of errors showing up in certain chords

‣ Idea: tuning errors are distributed equally over all 
possible triads

‣ All triads become equal, making key changes much, 
much easier

‣ Cost: mild dissonance is present in many chords
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12 Tone Equal Temperament
‣We want to fit 12 tones equally with an octave, i.e., 

between frequencies f and 2f

‣ How to do it?

‣ Could try to space the frequencies evenly, in other 
words, fn = (1+n/12)f

‣ Problem: the diatonic scale sounds just awful
29

Note C C# D D# E F F# G G# A B♭ B C

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Ratio 1.00 1.083 1.167 1.25 1.333 1.417 1.5 1.583 1.667 1.75 1.833 1.917 2
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12 Tone Equal Temperament

‣ Better: use a multiplicative factor such that fn = an/12f

‣ For f12 = 2f (one octave) we need a = 2.  Therefore, 

‣ Diatonic scale sounds pretty good!
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Note C C# D D# E F F# G G# A B♭ B C

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Ratio 1.00 1.0595 1.122 1.189 1.26 1.335 1.414 1.498 1.587 1.682 1.782 1.888 2

Major 3rd:
5/4 = 1.25

Perfect 5th:
3/2 = 1.5

Perfect 4th:
4/3 = 1.333
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Logarithmic Scale
‣ The equal-tempered scale is not equally spaced in 

units of f; it is equally spaced in units of log f

‣ Example: observe increase in log f per semitone
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Note C C# D D# E F F# G G# A B♭ B C
n 0 1 2 3 4 5 6 7 8 9 10 11 12

fn 1.00 1.0595 1.122 1.189 1.26 1.335 1.414 1.498 1.587 1.682 1.782 1.888 2

log fn 0.000 0.025 0.05 0.075 0.1 0.125 0.151 0.176 0.201 0.226 0.251 0.276 0.301

log fn/fn-1 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
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Logarithmic Scale
‣ The logarithmic scale shows up in 

instrument design

‣ Notice how the guitar frets get 
closer together as you move 
down the neck

‣ They are equally spaced by the 
same multiplicative factor 
21/12≅1.0595

‣ Equal temperament makes design 
easy, as long as you remember this 
factor
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Musical Cents
‣ Cents are a subdivision of the semitone that you will 

use for tuning your instruments

‣ Intervals between notes are described using cents

‣ The definition is: ¢ = 1200 log2(f2 / f1)

‣ Alternatively: f2 / f1 = 2¢/1200

‣ If f2 is one octave higher than f1, then f2 = 2f1, and 
therefore ¢ = 1200

‣ I.e., there are 1200 cents per octave, and 100 cents 
per semitone
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Intervals in Base-10
‣ If you don’t like working in base-2 logarithms, you 

can convert to base-10

‣ Note: 1200·log2(f2/f1) ≅ 3986·log(f2/f1)

‣ Alternatively, f2 = f1·2n/1200 ≅ f1·10n/3986
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Notes + Cents → Frequency
‣ How to use the digital tuner: what is C4# + 25¢?

• C4# = 277.18 Hz

• 225/1200 = 1.0145453

• C4# + 25¢ = 225/1200 × 277.18 Hz = 281.21 Hz

‣What is C4# - 25¢?
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Other Equal-Tempered Scales

‣ 12-tone equal temperament is special in that it is the 
smallest division of the octave that does a reasonable 
job of approximating the just intervals we like to hear

‣ But it’s not the only scale that makes a good 
approximation.  Others include:

• 19-tone scale

• 24-tone scale (a.k.a. quarter-tone scale)

• 31-tone scale

• 53-tone scale
36
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19-Tone Keyboard Layouts
‣ Proposed layout for 19-tone keyboards (from 

Hopkin, Ch. 3)
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Summary
‣ The intervals common to music around the world 

(octaves, 5ths, 3rds, …) are based on simple integer 
ratios of frequencies

‣We like these ratios because they are consonant; we 
dislike high-integer ratios because they sound 
dissonant, due to beats

‣ Just intonation: scale you get when tuning by ear

‣ Equal temperament: equally spaced semitones on a 
logarithmic scale

‣ Reading: Hopkin Ch. 3, Berg and Stork Ch. 9
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