
Physics 403
Programming Bootcamp:
Data Analysis with Python

Segev BenZvi

Department of Physics and Astronomy
University of Rochester

Table of Contents

1 Getting Started

2 Python Programming Basics
Printing
Variables
Conditional Statements
Loops
Functions
Lists
The For Loop

3 Third-Party Extensions
NumPy
Plotting

Segev BenZvi (UR) PHY 403 2 / 37

What is Python?

Python is an imperative, interpreted programming language with strong
dynamic typing.

I Imperative: programs are built around one or more subroutines, known
as “functions” and “classes.”

I Interpreted: program instructions are executed directly rather than
being compiled into machine code; compare to C, C++, ...

I Dynamic Typing: data types of variables (int, float, string, etc.),
are determined on the fly as the program runs.

I Strong Typing: converting a value of one type to another (e.g.,
string to int) is not done automatically.

Python offers fast and flexible development, and you can copy programs
between machines without worrying about compatibility. But it’s slower
than compiled Fortran, C, or C++ programs.

Segev BenZvi (UR) PHY 403 3 / 37

Why Use Python?

Python is one of the most popular scripting languages in the world, with a
large community of users and hundreds of third-party modules [1, 2].

It is also a “glue language” with bindings to popular software used in
physics and astronomy (for example, ROOT).

Segev BenZvi (UR) PHY 403 4 / 37

Key Third-Party Packages for Data Analysis
Must-haves. These come by default on some systems (Mac OS X):

I numpy: random numbers, arrays, transcendental functions, linear
algebra.

I scipy: statistical tests, special functions, integration, curve fitting,
minimization.

I matplotlib: plotting: xy plots, error bars, contour plots, histograms.
Worth using in your analysis:

I SciKits: data analysis add-ons to the scipy package.
I astroML: statistical methods and machine learning for astronomy.
I emcee: implementation of Markov Chain Monte Carlo.

Honorable mentions:
I lmfit, PyEphem and healpy (for astronomers), pandas.

Recommendation: most of these packages have image galleries with code
examples. Going through them is the best way to learn.

Segev BenZvi (UR) PHY 403 5 / 37

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
https://scikits.appspot.com/scikits
http://www.astroml.org/
http://dan.iel.fm/emcee/current/
http://lmfit.github.io/lmfit-py/
http://rhodesmill.org/pyephem/
https://pypi.python.org/pypi/healpy
http://pandas.pydata.org/

Python Tools
IPython
IPython [4] is highly recommended. Running ipython notebook in your
terminal will open a Mathematica-style notebook where you can run code.

Segev BenZvi (UR) PHY 403 6 / 37

http://ipython.org

Python Tools
IPython: wakari.io
If you don’t want to install IPython on your computer you can create a free
account at wakari.io.

Segev BenZvi (UR) PHY 403 7 / 37

https://wakari.io

Installing Packages

Python has two package managers that makes installing third-party
modules pretty simple:

I easy_install, an older, less user-friendly package manager.

Example
To install the pip program, in a terminal window type

sudo easy_install pip

I pip, a new package manager that supercedes easy_install.

Example
Install the scikit machine learning package in your home directory:

pip install --user scikits.learn

Segev BenZvi (UR) PHY 403 8 / 37

http://en.wikipedia.org/wiki/Package_manager

Table of Contents

1 Getting Started

2 Python Programming Basics
Printing
Variables
Conditional Statements
Loops
Functions
Lists
The For Loop

3 Third-Party Extensions
NumPy
Plotting

Segev BenZvi (UR) PHY 403 9 / 37

A Basic Python Program
Formatted Printing

You can print messages, literal values, and the contents of variables using
the print function:

print("Hello")
print(3.14159)
print("%s, %.2f" % ("Hello", 3.14159))

The resulting output:

Hello
3.14159
Hello, 3.14

The format string in the third print statement is explained in the Python
documentation [6]. For those of you who know C, it’s the same syntax as
the printf function.

Segev BenZvi (UR) PHY 403 10 / 37

Variables and Arithmetic

Variables store a value that can be looked at or changed later.

x = 4 # x is an int
print(" x = %d" % x) # prints 4
print(" 2x = %d" % (2*x)) # " 8
print("x^2 = %d" % (x**2)) # " 16

y = 5. # y is a float
print(" y = %g" % y) # prints 5
print("y/2 = %g" % (y/2)) # " 2.5

z = "mystring" # z is a string
print(" z = %s" % z)

u = z + x # raise a TypeError

Segev BenZvi (UR) PHY 403 11 / 37

Arithmetic and Basic Operations

A word of caution about integer division in Python 2:

I 5/3 = 1, not 1.667
I 1/2 = 0, not 0.5
I I.e., integer division pre-Python 3 is floor division, only producing an

integer quotient.
I Mistakenly assuming the output of integer division will give you a

non-integer is a common bug, and often hard to track down.

If you use Python 3, this is no longer an issue. For everyone else, if you
want the floating point value of the quotient of two integers you’ll need to
typecast the result:

q = float(x)/y.

Segev BenZvi (UR) PHY 403 12 / 37

Changing the Flow of Control
Conditional Statements

You can change the flow of control in a program using Boolean variables in
an if/elif/else block. Note: block code is indented.

x = 5

if x > 10: # - evaluates to False;
print("x > 10") # skip this...

elif x > 5: # - also False;
print("x > 5") # skip this too...

else: # - block ends here,
print("x <= 5") # so this is printed

isEven = (x % 2 == 0) # store a boolean (False),
if not isEven: # not False => True

print "x is odd" # so this is executed

Segev BenZvi (UR) PHY 403 13 / 37

Loops
The While Loop

While loops execute a block of code as long as a logical condition is
satisfied. Note: loops (and conditional code) can be nested.

i = 0
while i < 10: # Loop condition: i<10

i += 1 # - increment i, break if i>=10
if i % 2 == 0:

print(i) # Print i if it’s even

print("All done.")

Once the loop condition is no longer satisfied the flow of control is returned
to the main body of the program. Be careful about inadvertently writing an
infinite loop, a serious runtime bug where the loop condition never
evaluates to False.

Segev BenZvi (UR) PHY 403 14 / 37

Functions
User-Defined Functions

Functions are subroutines that accept some input and produce zero or more
outputs. They are typically used to define common tasks in a program.

def round_int(x): # Round ints to the
return 10 * ((x+5)/10) # nearest 10

x = 2
while x < 1000:

x *= 3 # increase x in
rx = round_int(x) # multiples of 3
print("%d -> %d" % (x, rx)) # until x > 1000

This program will calculate the list of numbers {6, 18, 54, 162, . . .} and
round them to {10, 20, 50, 160, . . .}.

Segev BenZvi (UR) PHY 403 15 / 37

In-Class Exercise
The Fibonacci Series

With the small amount you have learned, you can already implement
reasonably sophisicated programs.

Example
The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . is defined by the
linear homogeneous recurrence relation

Fn = Fn−1 + Fn−2,

where n = 0, 1, 2, 3, . . . and F0 = F1 = 1.

I Write a Python function that generates Fn given n.
I Write a program that generates all the Fibonacci numbers below 1000.

Let’s take 5 minutes to work this out, then look at possible solutions...

Segev BenZvi (UR) PHY 403 16 / 37

In-Class Exercise
Recursive Fibonacci Function

This implementation is a recursive function, i.e., a function that calls itself.
It’s an easy way to implement the Fibonacci sequence.

def fib(n):
"""Generate term n of the Fibonacci series."""
if n <= 1:

if n = 0 or 1: return 1
return 1

else:
else if n = 2, 3, ...: call fib
return fib(n-1) + fib(n-2)

Unfortunately, the function call stack grows rapidly with n, so fib will slow
down as n goes up. For sufficiently large n, you’ll hit the Python call stack
limit and the program will crash.

Segev BenZvi (UR) PHY 403 17 / 37

In-Class Exercise
Efficient Fibonacci Function

This more efficient implementation contains two internal state variables a
and b, which keep track of the terms Fn−1 and Fn−2.

def fib(n):
"""Generate the Fibonacci series."""
a, b = 0, 1
while n > 0: # loop condition

a, b, n = b, a+b, n-1 # update step
return b

We loop over n terms in the series by decrementing the function argument
n and terminating the loop when n = 0.

Segev BenZvi (UR) PHY 403 18 / 37

In-Class Exercise
Fibonacci Function

There are many ways we could calculate all of the {Fn} below 1000. A
simple way is to use another while loop:

n = 0 # Loop variable: n
f = fib(n) # Loop condition: fib(n)<1000
while f < 1000:

print("%4d%8d" % (n, f))
n +=1
f = fib(n) # Update for next iteration

There are two variables that track the state of the loop: n and f=fib(n).
We break out of the loop when f>=1000.

The result: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987.

Segev BenZvi (UR) PHY 403 19 / 37

Lists and Tuples

Lists offer the very convenient ability to store groups of related values in a
single data structure.

m = [5,6,7,8,9] # A list of integers
n = range(5,10) # A list n=m made with range()

print(m[0]) # print element 0: 5
print(n[1]) # print element 1: 6
print(n[-1]) # print last element: 9
print(n) # prints [5, 6, 7, 8, 9]

This program makes two equal lists of integers; the second one is produced
using the built-in function range. Access to elements in the list is provided
by the bracket operator []. Elements are indexed 0, 1, 2, . . . from the front,
or −1,−2,−3, . . . from the back.

Segev BenZvi (UR) PHY 403 20 / 37

Lists and Tuples
Tuples are the same as lists but cannot be modified once initialized. They
are “read-only” data structures.

t1 = ["Jan", "Feb", "Mar"] # a list
t2 = ("Apr", 10, 2020) # a tuple

print(t1[0]) # "Jan"
print(t2[-2]) # "May"

t1[0] = "JAN"
print(t1[0]) # "JAN"

t2[0] = "sneezy" # raises TypeError

Tuples are useful for storing data that should not be changed during
program execution (“const” behavior). Generally, treat a tuple as a
coherent unit of data, like a date or an address.

Segev BenZvi (UR) PHY 403 21 / 37

List Slicing

Very handy: you can get arbitrary sub-lists from a list using slicing. The
syntax is list[start:stop:step]. For example:

x = range(0,8)

print(x) # [0, 1, 2, 3, 4, 5, 6, 7]

print(x[1:]) # [1, 2, 3, 4, 5, 6, 7]
print(x[:-1]) # [0, 1, 2, 3, 4, 5, 6]

print(x[1:6]) # [1, 2, 3, 4, 5]
print(x[1:6:2]) # [1, 3, 5]

print(x[::-1]) # [7, 6, 5, 4, 3, 2, 1, 0]

Use slicing to easily reverse a list or step through the indices.

Segev BenZvi (UR) PHY 403 22 / 37

The For Loop
Iterating Through a List

The for loop is used to iterate through a list and do something to each of
its values:

xr = range(0,8) # [0, 1, 2, 3, 4, 5, 6, 7]

y = []
for x in xr:

print(x)
y.append(x**2) # stuff x^2 into y

print(y) # [0, 1, 4, 9, 16, 25, 36, 49]

Lists are dynamic objects which can grow as a program executes. In this
example we use for to loop through a list, square each of its values, and
stuff the result into a second list using the append function.

Segev BenZvi (UR) PHY 403 23 / 37

Table of Contents

1 Getting Started

2 Python Programming Basics
Printing
Variables
Conditional Statements
Loops
Functions
Lists
The For Loop

3 Third-Party Extensions
NumPy
Plotting

Segev BenZvi (UR) PHY 403 24 / 37

NumPy Arrays
Extensions to Lists

Using the for loop every time you want to do something to a list gets
pretty annoying. Luckily the numpy module defines a type called array
which supports vectorized arithmetic:

import numpy as np

x = np.arange(0,8) # arange is like range()

y = x**2 # acts like a for loop over x
print(y) # [0, 1, 4, 9, 16, 25, 36, 49]

In this example the single line y = x**2 replaces 3 lines of code from the
previous example, make the script more readable and less error-prone.

Segev BenZvi (UR) PHY 403 25 / 37

NumPy Arrays
Array Creation Routines

NumPy comes with a large number of creation routines [3], such as:

I An array of arbitrary shape initialized with zero:

>>> np.zeros(10, dtype=float)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

I An array of evenly spaced numbers on a log scale:

>>> np.logspace(1, 6, 6, base=2)
array([2., 4., 8., 16., 32., 64.])

I An N × N identity matrix:

>>> np.identity(2)
array([[1., 0.],

[0., 1.]])

Segev BenZvi (UR) PHY 403 26 / 37

Slicing NumPy Arrays with Boolean “Masks”
A “mask” array can select values which satisfy a logical condition:

import numpy as np

x = np.arange(0,8) # [0, 1, 2, 3, 4, 5, 6, 7]
y = 3*x # [0, 3, 6, 9, 12, 15, 18, 21]

c = x < 3 # An array of Boolean values:
print(c) # [True, True, True, False,

[False, False, False, False]

print(x[c]) # selects [0, 1, 2]

c = (x<3) | (x>5) # Combine cuts w/ bitwise OR (|)
print(y[c]) # select [0, 3, 6, 18, 21]

This is the type of selection used all the time in data analysis.

Segev BenZvi (UR) PHY 403 27 / 37

Multidimensional Arrays
Arrays of arrays (a.k.a. multidimensional arrays) can be used to represent
matrices:

import numpy as np

Make A a 3x3 matrix
A = np.arange(1,9).reshape((3,3))
print(A) # [[1, 2, 3],

[4, 5, 6],
[7, 8, 9]]

Transpose
[[1, 4, 7],

B = A.T # [2, 5, 8],
[3, 6, 9]]

All of the usual matrix operations are supported.

Segev BenZvi (UR) PHY 403 28 / 37

Linear Algebra

Linear algebra is supported with the numpy.linalg module:

import numpy as np # A = [[4, 2],
[2, 5]]

A = np.array([[4, 2], [2, 5]])
v, U = np.linalg.eig(A) # v = eigenvalues

U = eigenvectors
D = np.dot(np.dot(U.T, A), U)

The function linalg.eig calculates the eigenvalues and eigenvectors of
the real symmetrix 2× 2 matrix A. We then diagonalize A by calculating
the product

D = UT · A ·U,

where U is the matrix of eigenvectors.

Segev BenZvi (UR) PHY 403 29 / 37

File Input/Output

I File input and output is explained in the Python documentation.

f = open("filename.txt", "r") # read-only access
for line in f:

tokens = line.split() # tokenize (string) data
... # cast strings to float...

I Better option: use the NumPy function loadtxt which reads data
from a text file and loads it into a multidimensional table:

import numpy as np

data = np.loadtxt("filename.txt") # load table
x = data[:,0] # x = column 0
y = data[:,1] # y = column 1
...

Segev BenZvi (UR) PHY 403 30 / 37

https://docs.python.org/2/tutorial/inputoutput.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

Plotting with Matplotlib
Plotting is trivial with the matplotlib package. My recommendation: go to
the matplotlib gallery to learn how to make different kinds of plots.

%matplotlib inline # needed in IPython notebook only

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt("file.txt") # load table
x = data[:,0] # x = column 0
y = data[:,1] # y = column 1

plt.plot(x, y, "k.") # make an xy plot
plt.xlabel("x [arb. units]")
plt.ylabel("y [arb. units]") # don’t forget labels!
plt.title("Some XY data")
plt.show() # not needed in notebook

Segev BenZvi (UR) PHY 403 31 / 37

http://matplotlib.org
http://matplotlib.org/gallery.html

Table of Contents

4 Additional Material
Built-In Help
Profiling

Segev BenZvi (UR) PHY 403 32 / 37

Help Manual and Inspection
When running interactive sessions you can use the built-in help function to
print module and function documentation.

In [1]: from fractions import gcd

In [2]: help(gcd) # Opens a help dialog.
Type Q to quit.

Help on function gcd in module fractions:

gcd(a, b)
Calculate the Greatest Common Divisor of a and
b.

Unless b==0, the result will have the same sign
as b (so that when b is divided by it, the
result comes out positive).

Segev BenZvi (UR) PHY 403 33 / 37

Help Manual and Inspection
The inspect module can be used to view the source code of functions
imported into your python session.

In [1]: from fractions import gcd
In [2]: import inspect
In [3]: print(inspect.getsource(gcd))
def gcd(a, b):

"""Calculate the Greatest Common Divisor of a
and b.

Unless b==0, the result will have the same sign
as b (so that when b is divided by it, the
result comes out positive).
"""
while b:

a, b = b, a%b
return a

Segev BenZvi (UR) PHY 403 34 / 37

The Python Profiler

When calculations get large, efficiency starts to become important. Python
has several diagnostic tools available to check for bottlenecks in program
execution [5]. The easiest to use is the internal profiler (prun). Here is the
result for the recursive Fibonacci function:

%prun fib(20)

21893 function calls (3 primitive calls) in 0.005 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.005 0.005 fibslow.py:8(<module>)

21891/1 0.005 0.000 0.005 0.005 fibslow.py:8(fib)
1 0.000 0.000 0.000 0.000 {method ’disable’ of

’_lsprof.Profiler’ objects}

The function call fib(20) results in 21981 calls to fib. We weren’t
kidding when we said it was inefficient.

Segev BenZvi (UR) PHY 403 35 / 37

https://wiki.python.org/moin/PythonSpeed

References I

[1] Andrew Binstock. The Rise and Fall of Languages in 2013. Jan.
2014. URL: http://www.drdobbs.com/jvm/the-rise-and-fall-
of-languages-in-2013.

[2] Open HUB. Compare Languages: Monthly Commits. Dec. 2014.
URL: https://www.openhub.net/languages/compare.

[3] NumPy Array Creation Routines. URL: http:
//docs.scipy.org/doc/numpy/reference/routines.array-
creation.html.

[4] Fernando Pérez and Brian E. Granger. “IPython: a System for
Interactive Scientific Computing”. In: Computing in Science and
Engineering 9.3 (May 2007), pp. 21–29. ISSN: 1521-9615. DOI:
10.1109/MCSE.2007.53. URL: http://ipython.org.

[5] Python Speed. URL:
https://wiki.python.org/moin/PythonSpeed.

Segev BenZvi (UR) PHY 403 36 / 37

http://www.drdobbs.com/jvm/the-rise-and-fall-of-languages-in-2013
http://www.drdobbs.com/jvm/the-rise-and-fall-of-languages-in-2013
https://www.openhub.net/languages/compare
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://dx.doi.org/10.1109/MCSE.2007.53
http://ipython.org
https://wiki.python.org/moin/PythonSpeed

References II
[6] Python Tutorial: 7. Input and Output. URL:

https://docs.python.org/2/tutorial/inputoutput.html.

Segev BenZvi (UR) PHY 403 37 / 37

https://docs.python.org/2/tutorial/inputoutput.html

	Getting Started
	Python Programming Basics
	Printing
	Variables
	Conditional Statements
	Loops
	Functions
	Lists
	The For Loop

	Third-Party Extensions
	NumPy
	Plotting

	Appendix
	Additional Material
	Built-In Help
	Profiling

