Table of Contents

1 Simulation and Random Number Generation
 • Simulation of Physical Systems
 • Creating Fake Data Sets for Stress Tests
 • Parameter Estimation with Monte Carlo

2 Pseudo-Random Number Generators (PRNGs)
 • Linear Congruential Generators
 • Seeding the RNG
 • The Mersenne Twister
 • The Xorshift Algorithm
 • Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
 • Inversion Method
 • Acceptance/Rejection Method
 • Generating Gaussian and Poisson Random Numbers
“Monte Carlo” methods are a broad set of techniques for calculating probabilities and related quantities using sequences of random numbers.

- Simulate physical systems with models of noise and uncertainty
- Simulate data with known inputs to stress-test your analysis ("data challenges"). Can be quite extensive...
- Perform calculations that cannot be done analytically or with a deterministic algorithm. E.g., function minimization, or many high-dimensional integrals
- **Inverse Monte Carlo**: estimate best-fit parameters with uncertainties using many simulated data sets – avoid explicit and difficult uncertainty propagation

All this depends upon the generation of (pseudo-)random numbers. This means **you MUST understand how random number generators (RNGs) work!**
Example Simulation from U of R Faculty

Physics of granular materials which become rigid with increasing density ("jamming" transition) [1]:

Universality of Jamming Criticality in Overdamped Shear-Driven Frictionless Disks

Daniel Vågberg,¹ Peter Olsson,¹ and S. Teitel²

¹Department of Physics, Umeå University, 901 87 Umeå, Sweden
²Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 18 December 2013; revised manuscript received 4 August 2014; published 3 October 2014)

We investigate the criticality of the jamming transition for overdamped shear-driven frictionless disks in two dimensions for two different models of energy dissipation: (i) Durian’s bubble model with dissipation proportional to the velocity difference of particles in contact, and (ii) Durian’s “mean-field” approximation to (i), with dissipation due to the velocity difference between the particle and the average uniform shear flow velocity. By considering the finite-size behavior of pressure, the pressure analog of viscosity, and the macroscopic friction σ/p, we argue that these two models share the same critical behavior.
Example “Data Challenge”

The Laser Interferometer Gravitational Wave Observatory (LIGO) is (in)famous for carrying out extensive data challenges [2]

Very important to conduct end-to-end “stress tests” in background-dominated analyses. Above: fake binary merger injected into LIGO data stream, 2011
Example of Inverse Monte Carlo

From paper on discovery of cosmic-ray “hot spots” [3]:

PRL 101, 221101 (2008)

Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

(Milagro Collaboration)
Table of Contents

1 Simulation and Random Number Generation
 • Simulation of Physical Systems
 • Creating Fake Data Sets for Stress Tests
 • Parameter Estimation with Monte Carlo

2 Pseudo-Random Number Generators (PRNGs)
 • Linear Congruential Generators
 • Seeding the RNG
 • The Mersenne Twister
 • The Xorshift Algorithm
 • Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
 • Inversion Method
 • Acceptance/Rejection Method
 • Generating Gaussian and Poisson Random Numbers
Pseudo-Random Numbers

- We need to generate sequences of random numbers to model noise and uncertainty.

- Computers are not random, they are deterministic. So how do we get random sequences of numbers?
- Answer: we don’t. We get *pseudo*-random sequences and try to use them in clever ways.
Pseudo-Random Number Generators (RNGs)

Linear Congruential Generator

- An old but popular technique of generating pseudo-random number sequences is the linear congruential generator (LCG)
- A sequence of values \(x_i \) is generated using the recurrence relation

\[
x_{n+1} = (ax_n + c) \mod m
\]

- Generate integers in \([0, m - 1]\). The longest sequence with no repeating values, called the period of the RNG, is at most \(m\).
- Note: if \(m\) is an unsigned integer (\(\text{uint32}_t\) on most systems) then the period will be \(2^{32} \approx 4 \times 10^9\). \((2^{64} \approx 10^{18}.\) Most real simulations need orders of magnitude more numbers than this!
- Hull-Dobell Theorem: the full period is achieved iff \(c\) and \(m\) are co-prime, \(a - 1\) is divisible by all prime factors of \(m\), and \(a - 1\) is a multiple of 4 if \(m\) is a multiple of 4.
Choosing the Random Seed

- Note that the LCG is deterministic. If you start from the same \(x_0 \), a value known as the seed, you always get the same sequence.
- The choice of seed can affect the performance of the LCG; i.e., a poor choice could lead to a period \(\ll m \).
- Determinism is great for debugging, but if you generate the same numbers over and over you aren’t getting a pseudo-random sequence
- **Common mistake**: accidentally hardcoding the seed into your simulation code
- **Solution 1**: use system clock to choose \(x_0 \) via a call to `time(0)`; returns time in seconds since 00:00 UT, 1 Jan 1970 (Unix epoch).
 - Be careful to use the lowest-order bits of the time, including milliseconds. If you just use the seconds, what happens on a computing cluster if multiple jobs start simultaneously?

Good enough for physics simulations, but not cryptography
Choosing the Random Seed

- **Solution 2:** use the reservoir of random bits in computer’s entropy pool, accessible in `/dev/random`. Could be noise measured in a resistor, or clock drift [4], or a peripheral device connected to a source of quantum randomness.

- However you generate the seed, make sure you *always save the seed value* so you can regenerate the sequence later for checks!
Known Issues to Watch For

- The LCG is fast but has some known problems
- Many RNGs can produce hidden long-range correlations between values in the sequence.
- **Ex.:** if you generate n-dimensional points with the LCG, the points will lie on $(n!m)^{1/n}$ hyperplanes [5].
- Clearly random numbers shouldn’t do that.
- Could this affect your simulation? Maybe. Depends on your application.
Alternatives to the LCG

Mersenne Twister

- Most popular RNG currently in use is an algorithm called the Mersenne Twister [6], which uses the matrix linear recurrence relation

\[x_{k+n} = x_{k+m} \oplus (x^u_k \mid x^l_{k+1})A \]

with \(\mid = \) bitwise OR and \(\oplus = \) bitwise XOR.

- For \(n = \) degree of recurrence, \(w = \) word size in bits, and \(0 \leq r \leq w - 1 = \) bits in lower bitmask, the algorithm requires that the period length

\[2^{nw-r} - 1 \]

is a Mersenne prime – a prime number of the form \(2^n - 1 \).

- The MT implementation in Python and C++ (Boost, ROOT) has period \(2^{19937} - 1 \approx 4 \times 10^{6001} \).
Alternatives to the LCG
Xorshift Algorithms

- Another class of RNG is called Xorshift ("XOR-shift"), which depends on a combination of XOR and bit shift operations [7].
- These are extremely fast because XOR and shifting are simple CPU instructions. Example: a $2^{128} - 1$ period algorithm

```c
#include <cstdint>

// State variables; start s.t. not all = 0
uint32_t x, y, z, w;

uint32_t xorshift128() {
    uint32_t t = x ^ (x << 11);
    x = y; y = z; z = w;
    return w = w ^ (w >> 19) ^ t ^ (t >> 8);
}
```
Human-Generated Random Numbers

How good are you at generating random numbers?

Example

Without over-thinking this, take a minute to write down as many random values between 1 and 100 as you can.

What does the distribution of numbers look like?

How would you tell if this is really a random sequence? Is it easy to predict parts of the sequence (auto-correlation)?

Do we need to specify more information to answer this question?
Benford’s Law

- If you are like most people, you didn’t repeat numbers enough (remember the demon in the cartoon...)
- Also, your “random” sequence is probably uniform between 1 and 100
- However, in many sources of data the values follow a distribution known as Benford’s Law: 1 is the leading digit 30% of the time, 2 is the leading digit 18% of the time, etc.
- If you pick a number randomly from the logarithmic number line, it will roughly follow Benford’s Law

This rule can be used to detect fraudulent numbers in elections, accounting (stock prices), and scientific papers.
Table of Contents

1. **Simulation and Random Number Generation**
 - Simulation of Physical Systems
 - Creating Fake Data Sets for Stress Tests
 - Parameter Estimation with Monte Carlo

2. **Pseudo-Random Number Generators (PRNGs)**
 - Linear Congruential Generators
 - Seeding the RNG
 - The Mersenne Twister
 - The Xorshift Algorithm
 - Juking the Stats: Benford’s Law

3. **Sampling from Arbitrary PDFs**
 - Inversion Method
 - Acceptance/Rejection Method
 - Generating Gaussian and Poisson Random Numbers
Generating Arbitrary Random Numbers

- All of the RNGs we have discussed will produce uniformly distributed random numbers:
 - LCG generates numbers between $[0, m]$
 - MT generates numbers between $[0, 1]$
- This is great for situations when you want a uniform distribution, but that does not correspond to most physical situations
- Luckily, there are several ways to convert a uniform distribution to an arbitrary distribution:
 1. Transformation or inversion method
 2. Acceptance/rejection method
- The transformation method is generally the most efficient technique, but it is only applicable in cases where the PDF you want is integrable and the CDF can be inverted
- Acceptance/rejection is less efficient but works for any PDF you will want to use for random draws
Transformation/Inversion Method

Given a PDF \(p(x|I) \) and its CDF \(F(x) = \int_{-\infty}^{x} p(x'|I) \, dx' \):

1. Generate a uniform random number \(u \) between \([0, 1]\)
2. Compute the value \(x \) s.t. \(F(x) = u \)
3. Take \(x \) to be the random draw from \(p(x|I) \)

In other words, from \(u \) and the invertible CDF \(F(x) \), the value \(x = F^{-1}(u) \) is distributed according to \(p(x|I) \).
Transformation/Inversion Method

Exponential Distribution

Example

The PDF of the exponential distribution is

\[
p(x | \xi) = \frac{1}{\xi} e^{-x / \xi}
\]

and the CDF is

\[
F(x) = P(X \leq x | \xi) = \int_0^x \frac{1}{\xi} e^{-x' / \xi} \, dx' = 1 - e^{-x / \xi}
\]

Therefore, given \(u \in [0, 1] \) we can generate \(x \) according to \(p(x | \xi) \) by inverting the CDF:

\[
u = F(x) = 1 - e^{-x / \xi}
\]

\[
x = F^{-1}(u) = -\xi \ln (1 - u) = -\xi \ln u
\]
Limits of the Inversion Method

- Inversion is very efficient and great if you can invert your CDF
- Unfortunately this condition is not fulfilled even for many basic 1D cases

Example

The CDF of the Gaussian distribution is

\[
F(x) = \int_{-\infty}^{x} p(x|\mu, \sigma) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right]
\]

The error function cannot be expressed in closed form, though there are numerical approximations to \(\text{erf} \) and \(\text{erf}^{-1} \) in scipy.

- A trick for complicated PDFs: express the CDF as a tabulated list of values \((u, F(x)) \), “invert” it, and interpolate.
Acceptance/Rejection Method

Very old technique; modern form due to von Neumann. AKA “hit and miss,” it generates x from an arbitrary $f(x)$ using a so-called instrumental distribution $g(x)$, where $f(x) < Mg(x)$ and $M > 1$ is a bound on $f(x)/g(x)$.

1. Sample x from $g(x)$ and $u \in [0, 1]$.
2. Check if $u < f(x)/Mg(x)$
 - Yes: accept x
 - No: reject x, sample again

Very easy to implement, no limits on $f(x)$.

Calculation of π: uniformly generate (x, y) pairs in box, count up points inside the circle. $\pi \approx 4N_{\text{circle}}/N_{\text{box}}$.
Buffon’s Calculation of π

An early variant of the Monte Carlo approach can be seen in Buffon’s Needle (1700s), a method of calculating π

Given a needle of length L dropped on a plane with parallel lines d units apart, what is the probability the needle will cross a line if $L < d$?

- x is center distance to nearest line; $x \sim U(0, d/2)$
- θ is angle between needle center line: $\theta \sim U(0, \pi/2)$
- Needle crosses line if $x \leq L \sin \theta/2$. Joint PDF:

$$P = \int_0^{\pi/2} d\theta \int_0^{L \sin \theta/2} dx \frac{4}{\pi d} = \frac{2L}{\pi d}$$
Acceptance/Rejection Method
Sampling from a 1D Distribution

Example

Suppose $f(x) = \frac{3}{8}(1 + x^2)$ for $-1 \leq x \leq 1$. (Aside: do you recognize this distribution?)

- Generate random $x \in [-1, 1]$ and $y \in [0, 0.75]$.
- If $y < f(x)$, populate the histogram with x.
Acceptance/Rejection Method
Sampling from a 2D Distribution

Example

Suppose we want to sample from the 2D angular distribution

\[
\frac{1}{N} \frac{dN}{d \cos \theta d \varphi} = (1 + \cos \theta)(1 + \frac{1}{2} \cos 2\varphi)
\]

Generate triplets \((x, y, z)\), where \(x = \varphi \in [0, 2\pi]\), \(y = \cos \theta \in [-1, 1]\), and \(z \in [0, 3]\), keeping \((x, y)\) if \(z < f(x, y)\):

![Angular Distribution](image1)

![1,000,000 Events](image2)
Limitations of Acceptance/Rejection

Ideally you know f_{max} or normalize $f(x) = p(x|I)$ to have a maximum of 1.

- If not, you’ll have to pre-scan the parameter space in advance.

If $f(x)$ ranges over many orders of magnitude, acceptance/rejection can be very inefficient as you’ll waste lots of time in low-probability regions.

Possible approaches:

- Subdivide x into ranges with different f_{max}.
- Use importance sampling, where you generate random numbers according to a function that envelops the PDF you really want to sample.

Example implementation: vegas package in Python, an implementation of the adaptive Monte Carlo VEGAS multi-dimensional integration algorithm [8]
Monte Carlo Integration

- We can also solve integrals (esp. in several dimensions) with Monte Carlo. Mathematically, we approximate the integral by the average of the function of the interval of integration:

\[I = \int_{a}^{b} f(x) \, dx \approx (b - a) \, E(f(x)) \]

- We take discrete samples of \(f \) and let the MC estimate converge to the true integral as the number of samples gets large:

\[
E(f(x)) = \frac{1}{N} \sum_{i=1}^{N} f(u_i) \rightarrow \frac{1}{b - a} \int_{a}^{b} f(u) \, du
\]

\[I = I_{MC} = \frac{b - a}{N} \sum_{i=1}^{N} f(x_i) \]

- Error on the result given by the Central Limit Theorem:

\[\sigma = \frac{\sqrt{V(f)}}{\sqrt{N}} \propto \frac{1}{\sqrt{N}} \]
Generating a Gaussian Random Number

How would you generate a Gaussian random number?

1. You can use inversion if you can numerically estimate \(\text{erf}^{-1} \).
2. You can use the acceptance/rejection method if you don’t mind wasting some calculations.
3. You can exploit the Central Limit Theorem. Sum 12 uniform variables, which approximates a Gaussian of mean \(12 \times 0.5 = 6 \) and a variance of \(12 \times (1/12) = 1 \). Subtract 6 to get a mean of zero. This takes even more calculation and isn’t exact.
4. Use the polar form of the binormal distribution

\[
p(x, y|I) = \frac{1}{2\pi} \exp \left\{ -\frac{1}{2} (x^2 + y^2) \right\}
\]

To generate two Gaussian random numbers at once.
Box-Müller Algorithm

Re-express the 2D Gaussian PDF in polar coordinates:

\[p(x, y| l) \, dx \, dy = \frac{1}{2\pi} \exp \left\{ -\frac{1}{2} (x^2 + y^2) \right\} \, dx \, dy \]

\[= \frac{1}{2\pi} \exp \left\{ -\frac{r^2}{2} \right\} \, r \, dr \, d\varphi \]

Then generate an exponential variable \(z = r^2 / 2 \), change variables to \(r \), and generate a uniform polar angle \(\varphi \):

\[z = -\ln u_1 \text{ for } u_1 \sim U(0, 1) \]
\[r = \sqrt{2z} \]
\[\varphi = 2\pi u_2 \text{ for } u_2 \sim U(0, 1) \]

Then \(x = r \cos \varphi \) and \(y = r \sin \varphi \) are two normally-distributed random numbers. Very elegant! But due to the calls to trascendental functions (\(\sqrt{r} \), \(\log \), \(\cos \), etc.), numerical approaches could be faster in practice...
Generating a Poisson Random Variable

The best way to generate a Poisson random variable is to use inverse transform sampling of the cumulative distribution.

1. Generate \(u \sim U(0,1) \)
2. Sum up the Poisson PDF \(p(n|\lambda) \) with increasing values of \(n \) until the cumulative sum exceeds \(u \):

\[
 s_n = \sum_{k=0}^{n} \frac{\lambda^k e^{-\lambda}}{k!}, \quad \text{while } s_n < u
\]

3. Return the largest \(n \) for which \(s_n < u \).

This will work quite well until \(\lambda \) gets large, at which point you may start experiencing floating-point round-off errors due to the factor of \(e^{-\lambda} \). But for large \(\lambda \) you can start to use the Gaussian approximation.
References

References II

