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This Week in Bad Plots
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This Week in Bad Plots
Notice Anything Wrong?
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Last Time

Generation of pseudo-random numbers for simulation
I Simulation, data challenges, parameter estimation
I Linear Congruential Generators
I Mersenne Twister and Xorshift Generators
I Word of caution about seeding your RNG: system clock,

/dev/random, etc.
Generating random numbers from arbitrary PDFs

I Inversion method, if PDF integrable and CDF invertible
I Acceptance/rejection method, works for most cases
I Gaussian and Poisson random numbers
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Reminder of the Basics
Recall the basic rules of probability introduced at the start of the course:

I Sum Rule:

p(H|I ) + p(H|I ) = 1,
∑
i

p(Hi |I ) = 1

I Product Rule:

p(Hi ,D|I ) = p(D|Hi , I )p(Hi |I ) = p(Hi |D, I )p(D|I )
I Bayes’ Theorem:

p(Hi |D, I ) =
p(D|Hi , I )p(Hi |I )

p(D|I )
I Law of total probability:∑

i

p(Hi |D, I ) =

∑
i p(D|Hi , I )p(Hi |I )

p(D|I )
= 1

∴ p(D|I ) =
∑
i

p(D|Hi , I )p(Hi |I )
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Reminder of the Basics
The law of total probability has a continuous counterpart. For example,
given a model M with parameters θ,

p(D|M) =

∫
V
dθ p(D|θ,M) p(θ|M)

Interpretation: the likelihood of model M is the weighted average likelihood
for its parameters θ.

Parameter Estimation: the determination of the values of model
parameters θ using data.

I Bayesian: evaluate the full posterior PDF p(θ|D,M) or “best fit”
summary values like the mean or mode. Uses prior p(θ|M)

I Frequentist: evaluate the best fit values from the likelihood alone
I Both approaches: give some allowed range of parameter with some

probability measure (confidence interval, or credible range)
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Effect of the Prior

I The presence of a prior tends to make many people upset, because you
can get different answers depending on the prior you choose.

I Bayesian answer: that’s exactly right, but so what?
I The prior is how we incorporate external information about the

quantities being tested
I If the posterior PDF is dominated by the prior, that just means the

data are not constraining our model parameters
I Note: frequentists don’t use priors, which in practice means that

assumptions are hidden
I Best practice: report likelihoods and priors separately, and show the

effect of different priors on the posterior
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Coin Flipping

Example
From Sivia, Ch. 2 [1]: we walk into a casino and start betting on the
outcomes of flipping a coin. (It’s not a very impressive casino.)

I We don’t know the probability h of getting heads, so we have to
choose some p(h|I ).

I We do know that given h, the probability of observing heads r times in
N coin flips is given by the binomial PDF

p(r |N, h, I ) ∝ hr (1− h)N−r

What is the effect of p(h|I ) on the posterior probability p(h|N, r , I ), the
distribution of h given r heads in N tosses? From Bayes’ Theorem,

p(h|N, r , I ) ∝ p(r |h,N, I ) p(h|I ),

so let’s try out different priors and see what happens.
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Coin Flipping
Uniform “Ignorance” Prior
We start with no preferred value for h:
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Coin Flipping
Fair Coin Prior
We assume the coin is fair (h = 0.5) with some uncertainty:
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Coin Flipping
Unfair Coin Prior
We assume the coin is very unfair, but don’t know the bias.
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Marginalization

I Recall the definition of marginalization and marginal distributions: if
we don’t care about the effect of some parameter on a probability, we
can integrate it out

I Example: for model M with parameters θ, ϕ, if we are only interested
in θ then we can calculate the marginal PDF

p(θ|D,M) =

∫
dϕ p(θ, ϕ|D,M)

I Marginalization is a general technique in Bayesian analysis that
doesn’t have an analog in frequentist statistics

I Terms that we don’t care about are called nuisance parameters in
frequentist statistics. There is no general procedure for handling them
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Model Comparison

I One topic we haven’t discussed yet is model comparison
I The idea: compare two competing models by calculating the

probability of each model given the data D

I If we want to compare two or more alternative models Mi , then use
Bayes’ Theorem to calculate the posterior probability of each model:

p(Mi |D, I ) =
p(D|Mi , I )p(Mi |I )

p(D|I )

I This is analogous to parameter estimation, except instead of
estimating p(θ|D, I ) for a parameter, we estimate p(Mi |D, I ) for a
model

I The math is the same, but the interpretation differs
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The Odds Ratio

To select between two models, it is useful to calculate the ratio of the
posterior probabilities of the models. This is called the odds ratio:

Oij =
p(D|Mi , I )

p(D|Mj , I )

p(Mi |I )
p(Mj |I )

= Bij
p(Mi |I )
p(Mj |I )

The first term is called the Bayes Factor [2, 3] and the second is called the
prior odds ratio. Interpration:

I Prior odds: the amount by which you favor Mi over Mj before taking
data. There is no analog in frequentist statistics.

I Bayes Factor: the amount that the data D causes you favor Mi over
Mj . Frequentist analog: likelihood ratio (but frequentists can’t
marginalize nuisance parameters)
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The Odds Ratio

Interpreting the Bayes Factor, according to Jeffreys [2]:

Bij Strength of Evidence
< 1 : 1 negative (supports Mj)

1 : 1 to 3 : 1 barely worth mentioning
3 : 1 to 10 : 1 substantial support for Mi

10 : 1 to 30 : 1 strong support for Mi

30 : 1 to 100 : 1 very strong support for Mi

> 100 : 1 decisive evidence for Mi

But wait, remember the “5σ rule?” That corresponds to a Gaussian tail
probability (or p-value) of 6× 10−7. Isn’t that MUCH stronger evidence
than 100 : 1 odds. What’s going on?

Partial answer: odds ratios and p-values are not the same thing. Not to
mention the “look elsewhere effect” and other sources of statistical trials
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Aside: Statistical Trials
The Look Elsewhere Effect

I Suppose you are looking for a spike in some data with background,
e.g., a mass resonance or a spectral line, but you don’t know the
location of the feature, just a range of interest

I You scan over the data and find a spike which is > 3σ above the
background (p-value: ∼ 0.1%). Is this significant?

I Hang on: because location was a free parameter, you need to account
for the fact that any one of the bins you looked at could have been an
upward fluctuation of the background

I Conservatively, p → Nbins × p ≈ 2%, or ∼ 2σ
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Statistical Trials in the Bayesian Framework
Occam’s Razor

I Occam’s Razor: when selecting from among competing models,
generally prefer the simpler model

I For model comparison, the Bayes Factor and odds ratio have a built-in
Occam’s razor

I Searching for a spike: in the Bayesian framework, we would treat the
location of the spike as a nuisance parameter and marginalize it
(model M1)

I Compare this to a model with no spike (M0)
I If we did everything correctly, p(D|M1) should have extra terms

compared to p(D|M0) which “penalize” it for our ignorance of the
location of the spike

I So a piece of the odds ratio should account for statistical trials and
favor the simpler model!
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Occam’s Razor
The Bayesian Framework

Let’s be more explicit. Imagine M1 has a single parameter θ (e.g., the
location of a spike) which is unknown. M0 has θ fixed at θ0.

Suppose our prior on θ is uniform in model M1. I.e., we don’t know what it
is, just that it lies in some range ∆θ. And suppose the data tell us a lot
about θ, so p(D|θ,M1, I ) is very peaked about θ̂ with width δθ.
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Occam’s Razor
The Bayesian Framework

The “global likelihood” of the data given M1 (independent of θ) is

p(D|M1, I ) =

∫
dθ p(D|θ,M1, I ) p(θ|M1, I )

=

∫
dθ p(D|θ,M1, I )

1
∆θ

≈ p(D|θ̂,M1, I )
δθ

∆θ

Since M0 has no free parameters, its global likelihood is

p(D|M0, I ) =

∫
dθ p(D|θ,M1, I ) δ(θ − θ0)

= p(D|θ0,M1, I )

I.e., it’s just the likelihood of model M1 with θ fixed.
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Occam’s Razor
The Bayesian Framework

Putting it all together, the Bayes factor in favor of the more complex
model M1 is

B10 ≈
p(D|θ̂,M1, I )

p(D|θ0,M1, I )

δθ

∆θ

=
L(θ̂)

L(θ0)

δθ

∆θ

The first term is a likelihood ratio, which favors M1 because of the strong
peak at θ̂.

But the second term penalizes M1 since δθ < ∆θ. In other words, M1 is
penalized because of the wasted parameter space that gets ruled out by the
data.
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The Occam Factor

I Generalizing from this specific problem, we can express any likelihood
of data D given a model M as the maximum value of its likelihood
times an Occam factor:

p(D|M, I ) = LmaxΩθ

I The Occam factor corrects the likelihood for the statistical trials
incurred by scanning the parameter space for θ̂.

I The odds ratio automatically accounts for these factors. It is in this
way that the Bayesian framework prevents overfitting of data with
arbitrarily complicated models.

I Note: in frequentist statistics, statistical penalties are more of a
kluge. There are many ways to calculate them (e.g., the Nbins factor
used earlier) but no simple framework.
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Systematic Uncertainties

Recall that there are two types of experimental uncertainties:
1. Random: uncertainties which can be reduced by acquiring and

averaging more data (details on this next class)
2. Systematic: uncertainties which are fixed and tend to affect all

measurements equally

Example
Calibrations of meters and rulers are a classic example of systematic
uncertainties.

I Wooden meter sticks may shrink by several mm over time
I Energy scales in detectors may be uncertain due to other experimental

or theoretical uncertainties
I Astronomical “rulers” have lots of systematic uncertainties, e.g.,

Hubble’s constant H0
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Systematic Uncertainties
We try to tabulate systematic uncertainties in an “error budget”:

Systematic uncertainties in the scale
of cosmic-ray energy measurements
at the Pierre Auger Observatory [4]:

Source Uncertainty
Fluorescence Yield Y 14%
p, T , e Effects on Y 7%
Calibration 9.5%
Atmosphere 4%
Reconstruction 10%
Invisible Energy 4%
Total 22%
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Reducing Systematic Uncertainties

I We can try to reduce systematic uncertainties by changing our
experimental procedure

I Or, we work on secondary measurements to better evaluate physical
quantities that affect our primary calculations

I In the case of Auger, the collaboration put a lot of effort into reducing
systematic uncertainties related to the production of fluorescence light
by N2:
1. Measurement of the absolute level of fluorescence production in the

lab: FLASH (SLAC) [5] and AIRFLY (ANL) [6, 7]
2. Characterization of the “quenching” of fluorescence by molecular

collisions [8] and careful measurements of atmospheric conditions [9]

I Result: one of the largest sources of systematic uncertainties in the
energy scale reduced to the few percent level
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Marginalization of Uncertainties

I What happens if you can’t reduce systematic uncertainties to a
negligible level?

I Bayesian approach: we almost always have some prior information
about the accuracy of our “ruler.”

I Incorporate this prior information by parameterizing the systematic
uncertainty and then marginalizing the scale

Example
You want to compare the cosmic ray flux measured by several different
experiments, but the experiments used different measurement techniques
and have different systematic uncertainties. As a result, the spectra are
offset from each other. What do we do?

Parameterize the systematics as Gaussians of known mean and width, and
marginalize the absolute energy scale using these PDFs [10]
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Summary

I The formalism for parameter estimation and model selection in
Bayesian statistics is mathematically the same

I We estimate parameters by looking at the PDF and its maximum
likelihood (same as frequentist approach)

I We perform model selection by computing an odds ratio and making a
decision about the odds. In frequentist approach: a likelihood ratio
test, or Neyman-Pearson test

I The odds ratio has a built-in Occam factor that accounts for
“scanning” for the best value in a parameter space

I Marginalization gives us a uniform way of handling unknown nuisance
parameters, including systematic uncertainties
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