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Last Time: The Odds Ratio

To select between two models, it is useful to calculate the ratio of the
posterior probabilities of the models. This is called the odds ratio:

_ p(DIM;, 1) p(M;]1)
p(DIM;, 1) p(M;|1)

o P(Mi|I)

U p(Mjl)

The first term is called the Bayes Factor [1, 2] and the second is called the
prior odds ratio. Interpration:

0Oj

» Prior odds: the amount by which you favor M; over M; before taking
data. There is no analog in frequentist statistics.

» Bayes Factor: the amount that the data D causes you favor M; over
M;. Frequentist analog: likelihood ratio (but frequentists can't
marginalize nuisance parameters)
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Last Time: Occam Factors

» We can express any likelihood of data D given a model M as the
maximum value of its likelihood times an Occam factor:

p(D|M, I) = »CmaxQQ

» The Occam factor corrects the likelihood for the statistical trials
incurred by scanning the parameter space for 6.

» Occam’s Razor: when selecting from among competing models,
generally prefer the simpler model

» Statistical Trials: it becomes harder to reject the “null hypothesis”
when the number of hypotheses in a test becomes large.

Example

You have a histogram and look for a spike in any one bin. The
look-elsewhere effect: any bin could be a background fluctuation.
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Last Time: Systematic Uncertainties

There are two types of experimental uncertainties:

1. Random: uncertainties which can be reduced by acquiring and
averaging more data (details on this next class)

2. Systematic: uncertainties which are fixed and tend to affect all
measurements equally

Example

Calibrations of meters and rulers are a classic example of systematic
uncertainties.

» Wooden meter sticks may shrink by several mm over time

» Energy scales in detectors may be uncertain due to other experimental
or theoretical uncertainties

» Astronomical “rulers” have lots of systematic uncertainties, e.g.,
Hubble's constant Hy
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Effect of Priors

Uniform “Ignorance” Prior
Coin flip example from [3]. We start with no preferred value for h:
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Effect of Priors

Unfair Coin Prior

We assume the coin is very unfair, but don't know the bias.
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Effect of Priors

Zeros

Ultimately the choice of priors will not really matter once you've taken
enough data, unless your prior is really pathological

\4

Pathology: if your prior is zero somewhere in the range of interest, no
amount of data will budge the posterior PDF off that zero

v

v

This is doing the “right” thing: your zero prior is explicitly a statement
that no amount of data will ever move you to accept some model or
part of the parameter space

OK, the system works... but usually you don't intend this behavior.

v

Hang on, here comes a counterexample: you limit a quantity like m?
to a physical region, so your prior is 0 for m? < 0.

v
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Caution: Parameterization Matters

From Oser: two theorists predict the mass of a new particle:

1. A: There should be a new particle whose mass is between 0 and 1 in
rationalized uints. | have no other knowledge about the mass, so I'll
assume it has equal chance of being between 0 and 1. l.e., p(m|l) = 1.

2. B: There is a particle described by a free parameter y = m?. The true
value of y must lie between 0 and 1, but otherwise | have no
knowledge about it, so | choose p(y|/) = 1.

Both statements express ignorance about the same theory, but with
different parameterizations.

ply11) = ol | 57| ~ -

Uh oh: transformation of variables makes a uniform prior non-uniform.
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Principle of Indifference

As a general rule, we want priors that do not inadvertently push us toward
a result. We want non-informative priors. Principle of Indifference: given
n > 1 mutually exclusive and exhaustive possibilities, each should be
assigned a probability equal to 1/n.

Example

Drawing from a deck of cards, we apply the principle of indifference and
assume the probability of selecting a given card is 1/52.

Example

Rolling dice with n faces, we assume the die lands on one face (exclusive
possibility) with probability 1/6.

Example

Statistical mechanics: any two microstates of a system with the same
energy are equally probable at equilibrium.
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Principle of Indifference

Continuous Location Parameter

» Consider an event that we locate with respect to some origin (a
“location parameter”

» Example: we are interested in p(X|/), where X ="the tallest tree in
the woods is between x and x + dx.”

» In the problem, x is measured with respect to some origin. What if we
change the origin so that x — x’ = x + ¢?

» In the limit of complete ignorance, our choice of prior must be
completely indifferent to shifts in location. This implies

p(XI1) dX = p(X1) dX' = p(X'|1) d(X + €) = p(X'|I)dX
If we represent the PDF by f(x), then clearly

f(x) = f(x') = f(x+¢c) = f(x) = constant
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Uniform Prior

Continuous Location Parameter

v

Since f(x)=constant, we must also have p(X|/) = constant.

v

If we have upper and lower bounds on x (we know the dimensions of
the woods), then

1
p(X|l) = constant = ———,

Xmax — Xmin

the uniform prior we have already used a few times.

v

If the bounds xmin and xmax are not known, then technically p(X|/) is
not normalized. It is called an improper prior.

» Note: improper priors can be used in parameter estimation problems,
as long as the posterior distribution is normalized.

» Note: improper priors cannot be used in model selection problems,
because the Occam factors depend on knowing the prior range for
each model parameter.
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Principle of Indifference

Continuous Scale Parameter

» Consider a problem where we are interested in the mean lifetime of a
particle. Lifetime is a scale parameter because it can only have
positive values.

» We are interested in p(7 /), where T="the “mean lifetime is between
7 and 7+ d7."

» In the limit of complete ignorance, our prior must be indifferent to
changes in scale 3, e.g., if we change our time units 7 — 7/ = 7:

p(T11) dT = p(T'|1) dT" = p(T'|1) d(BT) = Bp(T'|I) dT
If we represent the PDF by g(7), then

g(7) = Bg(r') = pg(Br) = g(r) = constant/7
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Jeffreys Prior

Continuous Scale Parameter

» Since g(7)=constant, we must also have

constant

p(TI) =

\4

This form of the prior is called the Jeffreys prior [1].

v

If we have upper and lower bounds on 7 then

1

7In (Tmax/Tmin)

p(TIl) =

v

The Jeffreys prior is very convenient for problems in which we are
ignorant about scale. It provides logarithmic uniformity via equal
probability per decade.

» Note: using a uniform prior on a scale parameter will cause you to
dramatically weight your PDF toward the highest decade.
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Modified Jeffreys Prior

Modified Jeffreys Prior

Probability

» The Jeffreys prior is not
normalizable if a scale parameter
like 7 can be zero.

Unmodified Jeffreys prior -

» Alternative: modified Jeffreys prior,
which becomes uniform for 7 < a:

‘ (7|1 = .

] PO = 3 a)In (3 + Tman) /3)

Modified Jeffreys prior
1F a=0.1
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Principle of Maximum Entropy

» The Principle of Indifference, first developed by Bernoulli and Laplace,
has a more quantitative form in the Principle of Maximum Entropy

» The probability distribution which bests represents the current state of
knowledge is the one with the greatest entropy

» For a discrete probability distribution with values p;, the uncertainty of
the distribution is given by [4]

S(p1,P2s-- s Pn) = Zplln pi)

» S measures the information content of the distribution

» If we want to assign a prior that reflects our ignorance about a
parameter, then we should assign a prior probability distribution that
maximizes S
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Intuition: Throwing Dice

90
80
70
60
50
40
30
20
10

0

count

40
35
30
25
20
15
10

count

S :‘0428 50 :‘1433
40 1
~ 30 q
=]
2
© 20 g
10 g
1 0
4 5 4 7
face face
S:;.42 ‘ 20 :‘1479
15 1
£ 10 |
Q
Q
5 i
0
1 4 5 1 4 7
face face
Y



Intuition: Weighted Die

» Suppose we have a weighted die with unknown outcomes p;, but we
are told that

6
mean number of dots = Zi pi = 4.
i=1
(Note: for a fair die, the mean is 3.5.)
» The probability of a given set of outcomes n = (n1,..., ng) is given by
the multinomial distribution:

NI

; n n,
7|p11 ><...><p66
ne:

p(nla"'an6’Nap1a"'ap6): ]
n'...

» The quantity W = N!/(n1!...ng!), or multiplicity, represents the
number of states available to any given outcome n.

» n with the largest multiplicity W is the most probable.
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Maximizing the Multiplicity
Let's maximize In W and use Stirling’s approximation (In N! ~ NIn N — N):

6 6
InW:NInN—N—ZNp,-Ian,-+ZNp,-, where n; = Np;

i=1 i=1

6 6
=NInN—N=>"Npiln(Np;) + > _ Np;

i=1 i=1

6
:NInN—N—N<Zp;Inp,-+InN>+N

i—1
6
=-N Z piIn p;
i—1

= NS
. W =exp(NS)
N is the number of throws, and S is the entropy. Maximizing entropy

maximizes W.
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Shannon-Jaynes Entropy
Up to now we have claimed total ignorance of the p;, but what if there is
some prior estimate m; on the p;? Then

NI
...y
M

Inp(ni,...,nm|N,p1,....,ppm) = Z Inm; +InN! — Zlnn,
= i=1

M

M
Z iInm; — NZp,-lnp;

=1

(S

p(ni,...,nm|N, p1,....pm) = —————mf* x ... x myy

M
= NZ In(pi/m;i) = NS
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Shannon-Jaynes Entropy
We are left with the generalized Shannon-Jaynes entropy
M
S=-> piln(pi/m)
i=1
For the continuous case,

S= —/p(x) In (%)dx

The quantity m(x) is called the Lebesgue measure and ensures that S is
invariant under the change of variables x — x’ = f(x) since m(x) and p(x)
transform in the same way.

OK, now we're ready to explore the maximum entropy principle.
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MaxEnt and the Principle of Indifference

» We want to find a set of probabilities p1, ..., p, that maximizes

5(p17--~7pn - ZP:'“P/

» If all of the p; are independent, this implies
S 0S
dsS=—d 4+ —dpp,=0
apy 1+ 8p,, P
» But if the p; are independent, then all of the coefficients are

individually equal to 0.
» Conclusion: all of the p; are equal; i.e., we need a uniform prior.

Hence, the principle of maximum entropy is just a formal statement of
the principle of ignorance.

v
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MaxEnt and Constraints

Lagrange Undetermined Multipliers

» Suppose we impose a constraint on the p; of the general form
C(p1,---,pn) =0. Then

dC:%dpl—i-...—i-%dpn:O
8[31 apn

» We can combine dS and the constraint dC using a Lagrange
multiplier:
dS —AdC =0

and therefore

oS oC 0S oC
dS—AdC=|—— - A—)dp1 +...+ - dp, =0
(3P1 op1 ) P <3Pn 9pn > P

We set the first coefficient to zero, letting us solve for A and giving M
simultaneous equations for the p;.
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Normalization Constraint

» We can always start from the normalization constraint (sum rule):

C:Zn:p,':].
i=1

» Therefore, from dS — A\dC = 0 we have

M M
d [—Zp;ln(p,-/m,-)—)\ <zp;—1>] =0

i=1

[ f:plnp,Jer,lnm,_A(Z )]:o

=1 =

M
dln n pi api o
Z( Inpl_pla—ljl+l —Aa—pl)dp,—o

i=1

M
Z(_In(pi/mf)_l_)\)dpizo

i=1
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Normalization Constraint

Derivation of Uniform Distribution

» Allowing the p; to vary independently implies that all of the
coefficients must vanish, so that

—In(pi/m)) —1—=X=0 = p; = mje” 1+

» Since > pi=1and > m; =1,

M M
Z m,'e_(lﬂ) =1=¢ (1Y Z m;
i=1 i=1

Thus, A = -1 and
pi = m;

» If our prior information tells us that m; = constant, then p; describe a
uniform distribution.
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Gaussian: Known Mean and Variance
» Suppose you have a continous variable x and you constrain the mean
to be 1 and the variance to be

/XXH p(x) dx =1

L

/XHX p(x) dx = p

XL
XK
/ (x = 1) p(x) dx = 0®
XL

» In the limit that the variance is small compared to the range of the
parameter, i.e.,
Xy — — X
HZH >1 and i
o o
then it turns out the maximum entropy distribution with this variance

>1

is Gaussian:
L o—(np?/20?

\V22mo
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Utility of the Gaussian

v

Suppose your data are scattered around your model with an unknown
error distribution.

v

It turns out that the most conservative thing you can assume (in a
maximum entropy sense) is the Gaussian distribution.

v

By “conservative” we mean that the Gaussian will give a greater
uncertainty than what you would get from a more appropriate
distribution based on more information.

» Wait, isn't that bad?
No: for model fitting, a Gaussian model of the uncertainties is a safe

choice. Other distributions may give you artificially tight constraints
unless you have appropriate prior information.

v
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Summary

v

We like to identify uniform priors for inference in physics problems

We have to be careful about transforming variables because uniform
priors may not stay uniform under changes of variables

» Uniform Prior: appropriate for a location parameter

» Jeffreys Prior: appropriate for a scale parameter

v

v

We have intuitively been picking uninformative priors using the
Principle of Indifference

v

This principle can be made quantitative using the Principle of
Maximum Entropy, which tells us that the least informative prior is
the one which maximizes

N
S=-=> piln(pi/m)
i=1

v

By maximizing S under different constraints we can derive the PDFs
used earlier in the course.
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