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Last Time: The Odds Ratio

To select between two models, it is useful to calculate the ratio of the
posterior probabilities of the models. This is called the odds ratio:

Oij =
p(D|Mi , I )

p(D|Mj , I )

p(Mi |I )
p(Mj |I )

= Bij
p(Mi |I )
p(Mj |I )

The first term is called the Bayes Factor [1, 2] and the second is called the
prior odds ratio. Interpration:

I Prior odds: the amount by which you favor Mi over Mj before taking
data. There is no analog in frequentist statistics.

I Bayes Factor: the amount that the data D causes you favor Mi over
Mj . Frequentist analog: likelihood ratio (but frequentists can’t
marginalize nuisance parameters)
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Last Time: Occam Factors

I We can express any likelihood of data D given a model M as the
maximum value of its likelihood times an Occam factor:

p(D|M, I ) = LmaxΩθ

I The Occam factor corrects the likelihood for the statistical trials
incurred by scanning the parameter space for θ̂.

I Occam’s Razor: when selecting from among competing models,
generally prefer the simpler model

I Statistical Trials: it becomes harder to reject the “null hypothesis”
when the number of hypotheses in a test becomes large.

Example
You have a histogram and look for a spike in any one bin. The
look-elsewhere effect: any bin could be a background fluctuation.
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Last Time: Systematic Uncertainties

There are two types of experimental uncertainties:
1. Random: uncertainties which can be reduced by acquiring and

averaging more data (details on this next class)
2. Systematic: uncertainties which are fixed and tend to affect all

measurements equally

Example
Calibrations of meters and rulers are a classic example of systematic
uncertainties.

I Wooden meter sticks may shrink by several mm over time
I Energy scales in detectors may be uncertain due to other experimental

or theoretical uncertainties
I Astronomical “rulers” have lots of systematic uncertainties, e.g.,

Hubble’s constant H0
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Effect of Priors
Uniform “Ignorance” Prior
Coin flip example from [3]. We start with no preferred value for h:
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Effect of Priors
Unfair Coin Prior
We assume the coin is very unfair, but don’t know the bias.
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Effect of Priors
Zeros

I Ultimately the choice of priors will not really matter once you’ve taken
enough data, unless your prior is really pathological

I Pathology: if your prior is zero somewhere in the range of interest, no
amount of data will budge the posterior PDF off that zero

I This is doing the “right” thing: your zero prior is explicitly a statement
that no amount of data will ever move you to accept some model or
part of the parameter space

I OK, the system works... but usually you don’t intend this behavior.
I Hang on, here comes a counterexample: you limit a quantity like m2

to a physical region, so your prior is 0 for m2 < 0.
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Caution: Parameterization Matters

From Oser: two theorists predict the mass of a new particle:

1. A: There should be a new particle whose mass is between 0 and 1 in
rationalized uints. I have no other knowledge about the mass, so I’ll
assume it has equal chance of being between 0 and 1. I.e., p(m|I ) = 1.

2. B: There is a particle described by a free parameter y = m2. The true
value of y must lie between 0 and 1, but otherwise I have no
knowledge about it, so I choose p(y |I ) = 1.

Both statements express ignorance about the same theory, but with
different parameterizations.

p(y |I ) = p(m|I )
∣∣∣∣dmdy

∣∣∣∣ ∼ 1
√
y

Uh oh: transformation of variables makes a uniform prior non-uniform.
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Principle of Indifference
As a general rule, we want priors that do not inadvertently push us toward
a result. We want non-informative priors. Principle of Indifference: given
n > 1 mutually exclusive and exhaustive possibilities, each should be
assigned a probability equal to 1/n.

Example
Drawing from a deck of cards, we apply the principle of indifference and
assume the probability of selecting a given card is 1/52.

Example
Rolling dice with n faces, we assume the die lands on one face (exclusive
possibility) with probability 1/6.

Example
Statistical mechanics: any two microstates of a system with the same
energy are equally probable at equilibrium.
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Principle of Indifference
Continuous Location Parameter

I Consider an event that we locate with respect to some origin (a
“location parameter”

I Example: we are interested in p(X |I ), where X =“the tallest tree in
the woods is between x and x + dx .”

I In the problem, x is measured with respect to some origin. What if we
change the origin so that x → x ′ = x + c?

I In the limit of complete ignorance, our choice of prior must be
completely indifferent to shifts in location. This implies

p(X |I ) dX = p(X ′|I ) dX ′ = p(X ′|I ) d(X + c) = p(X ′|I )dX

If we represent the PDF by f (x), then clearly

f (x) = f (x ′) = f (x + c) =⇒ f (x) = constant
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Uniform Prior
Continuous Location Parameter

I Since f (x)=constant, we must also have p(X |I ) = constant.
I If we have upper and lower bounds on x (we know the dimensions of

the woods), then

p(X |I ) = constant =
1

xmax − xmin
,

the uniform prior we have already used a few times.
I If the bounds xmin and xmax are not known, then technically p(X |I ) is

not normalized. It is called an improper prior.
I Note: improper priors can be used in parameter estimation problems,

as long as the posterior distribution is normalized.
I Note: improper priors cannot be used in model selection problems,

because the Occam factors depend on knowing the prior range for
each model parameter.
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Principle of Indifference
Continuous Scale Parameter

I Consider a problem where we are interested in the mean lifetime of a
particle. Lifetime is a scale parameter because it can only have
positive values.

I We are interested in p(T |I ), where T =“the “mean lifetime is between
τ and τ + dτ .”

I In the limit of complete ignorance, our prior must be indifferent to
changes in scale β, e.g., if we change our time units τ → τ ′ = βτ :

p(T |I ) dT = p(T ′|I ) dT ′ = p(T ′|I ) d(βT ) = βp(T ′|I ) dT

If we represent the PDF by g(τ), then

g(τ) = βg(τ ′) = βg(βτ) =⇒ g(τ) = constant/τ
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Jeffreys Prior
Continuous Scale Parameter

I Since g(τ)=constant, we must also have

p(T |I ) =
constant

τ

I This form of the prior is called the Jeffreys prior [1].
I If we have upper and lower bounds on τ then

p(T |I ) =
1

τ ln (τmax/τmin)

I The Jeffreys prior is very convenient for problems in which we are
ignorant about scale. It provides logarithmic uniformity via equal
probability per decade.

I Note: using a uniform prior on a scale parameter will cause you to
dramatically weight your PDF toward the highest decade.
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Modified Jeffreys Prior

I The Jeffreys prior is not
normalizable if a scale parameter
like τ can be zero.

I Alternative: modified Jeffreys prior,
which becomes uniform for τ < a:

p(T |I ) =
1

(τ + a) ln ((a + τmax)/a)
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Principle of Maximum Entropy

I The Principle of Indifference, first developed by Bernoulli and Laplace,
has a more quantitative form in the Principle of Maximum Entropy

I The probability distribution which bests represents the current state of
knowledge is the one with the greatest entropy

I For a discrete probability distribution with values pi , the uncertainty of
the distribution is given by [4]

S(p1, p2, . . . , pn) = −
n∑

i=1

pi ln (pi )

I S measures the information content of the distribution
I If we want to assign a prior that reflects our ignorance about a

parameter, then we should assign a prior probability distribution that
maximizes S
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Intuition: Throwing Dice
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Intuition: Weighted Die

I Suppose we have a weighted die with unknown outcomes pi , but we
are told that

mean number of dots =
6∑

i=1

i pi = 4.

(Note: for a fair die, the mean is 3.5.)
I The probability of a given set of outcomes n = (n1, . . . , n6) is given by

the multinomial distribution:

p(n1, . . . , n6|N, p1, . . . , p6) =
N!

n1! . . . n6!
pn1
1 × . . .× pn6

6

I The quantity W = N!/(n1! . . . n6!), or multiplicity, represents the
number of states available to any given outcome n.

I n with the largest multiplicity W is the most probable.
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Maximizing the Multiplicity
Let’s maximize lnW and use Stirling’s approximation (lnN! ≈ N lnN −N):

lnW = N lnN − N −
6∑

i=1

Npi lnNpi +
6∑

i=1

Npi , where ni = Npi

= N lnN − N −
6∑

i=1

Npi ln (Npi ) +
6∑

i=1

Npi

= N lnN − N − N

(
6∑

i=1

pi ln pi + lnN

)
+ N

= −N
6∑

i=1

pi ln pi

= NS

∴ W = exp (NS)

N is the number of throws, and S is the entropy. Maximizing entropy
maximizes W .
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Shannon-Jaynes Entropy
Up to now we have claimed total ignorance of the pi , but what if there is
some prior estimate mi on the pi? Then

p(n1, . . . , nM |N, p1, . . . , pM) =
N!

n1! . . . nM !
mn1

1 × . . .×mnM
M

ln p(n1, . . . , nM |N, p1, . . . , pM) =
M∑
i=1

ni lnmi + lnN!−
M∑
i=1

ln ni !

=
M∑
i=1

ni lnmi − N
M∑
i=1

pi ln pi

= N

(
M∑
i=1

pi lnmi −
M∑
i=1

pi ln pi

)

= −N
M∑
i=1

pi ln (pi/mi ) = NS
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Shannon-Jaynes Entropy

We are left with the generalized Shannon-Jaynes entropy

S = −
M∑
i=1

pi ln (pi/mi )

For the continuous case,

S = −
∫

p(x) ln
(
p(x)

m(x)

)
dx

The quantity m(x) is called the Lebesgue measure and ensures that S is
invariant under the change of variables x → x ′ = f (x) since m(x) and p(x)
transform in the same way.

OK, now we’re ready to explore the maximum entropy principle.
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MaxEnt and the Principle of Indifference

I We want to find a set of probabilities p1, . . . , pn that maximizes

S(p1, . . . , pn) = −
n∑

i=1

pi ln pi .

I If all of the pi are independent, this implies

dS =
∂S

∂p1
dp1 + . . .+

∂S

∂pn
dpn = 0

I But if the pi are independent, then all of the coefficients are
individually equal to 0.

I Conclusion: all of the pi are equal; i.e., we need a uniform prior.
I Hence, the principle of maximum entropy is just a formal statement of

the principle of ignorance.

Segev BenZvi (UR) PHY 403 24 / 31



MaxEnt and Constraints
Lagrange Undetermined Multipliers

I Suppose we impose a constraint on the pi of the general form
C (p1, . . . , pn) = 0. Then

dC =
∂C

∂p1
dp1 + . . .+

∂C

∂pn
dpn = 0

I We can combine dS and the constraint dC using a Lagrange
multiplier:

dS − λdC = 0

and therefore

dS − λdC =

(
∂S

∂p1
− λ ∂C

∂p1

)
dp1 + . . .+

(
∂S

∂pn
− λ ∂C

∂pn

)
dpn = 0

We set the first coefficient to zero, letting us solve for λ and giving M
simultaneous equations for the pi .
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Normalization Constraint
I We can always start from the normalization constraint (sum rule):

C =
n∑

i=1

pi = 1

I Therefore, from dS − λdC = 0 we have

d

[
−

M∑
i=1

pi ln (pi/mi )− λ

(
M∑
i=1

pi − 1

)]
= 0

d

[
−

M∑
i=1

pi ln pi +
M∑
i=1

pi lnmi − λ

(
M∑
i=1

pi − 1

)]
= 0

M∑
i=1

(
− ln pi − pi

∂ ln pi
∂pi

+ lnmi − λ
∂pi
∂pi

)
dpi = 0

M∑
i=1

(− ln (pi/mi )− 1− λ) dpi = 0
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Normalization Constraint
Derivation of Uniform Distribution

I Allowing the pi to vary independently implies that all of the
coefficients must vanish, so that

− ln (pi/mi )− 1− λ = 0 =⇒ pi = mie
−(1+λ)

I Since
∑

pi = 1 and
∑

mi = 1,

M∑
i=1

mie
−(1+λ) = 1 = e−(1+λ)

M∑
i=1

mi

Thus, λ = −1 and
pi = mi

I If our prior information tells us that mi = constant, then pi describe a
uniform distribution.
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Gaussian: Known Mean and Variance
I Suppose you have a continous variable x and you constrain the mean

to be µ and the variance to be σ2:∫ xH

xL

p(x) dx = 1∫ xH

xL

x p(x) dx = µ∫ xH

xL

(x − µ)2 p(x) dx = σ2

I In the limit that the variance is small compared to the range of the
parameter, i.e.,

xH − µ
σ

� 1 and
µ− xL
σ

� 1

then it turns out the maximum entropy distribution with this variance
is Gaussian:

p(x) =
1√
2πσ

e−(x−µ)
2/2σ2
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Utility of the Gaussian

I Suppose your data are scattered around your model with an unknown
error distribution.

I It turns out that the most conservative thing you can assume (in a
maximum entropy sense) is the Gaussian distribution.

I By “conservative” we mean that the Gaussian will give a greater
uncertainty than what you would get from a more appropriate
distribution based on more information.

I Wait, isn’t that bad?
I No: for model fitting, a Gaussian model of the uncertainties is a safe

choice. Other distributions may give you artificially tight constraints
unless you have appropriate prior information.
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Summary

I We like to identify uniform priors for inference in physics problems
I We have to be careful about transforming variables because uniform

priors may not stay uniform under changes of variables
I Uniform Prior: appropriate for a location parameter
I Jeffreys Prior: appropriate for a scale parameter

I We have intuitively been picking uninformative priors using the
Principle of Indifference

I This principle can be made quantitative using the Principle of
Maximum Entropy, which tells us that the least informative prior is
the one which maximizes

S = −
N∑
i=1

pi ln (pi/mi )

I By maximizing S under different constraints we can derive the PDFs
used earlier in the course.
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