

Table of Contents

1 Review of Last Class

- Odds Ratio
- Occam Factors
- Effect of Priors

2 Principle of Indifference

- Uniform Prior
- Jeffreys Prior

Principle of Maximum Entropy

- Multinomial Distribution
- Shannon-Jaynes Entropy
- Maximization under Constraint
- Uniform Distribution Revisited
- Gaussian Distribution

∃ ► < ∃ ►

Last Time: The Odds Ratio

To select between two models, it is useful to calculate the ratio of the posterior probabilities of the models. This is called the odds ratio:

$$O_{ij} = \frac{p(D|M_i, I)}{p(D|M_j, I)} \frac{p(M_i|I)}{p(M_j|I)}$$
$$= B_{ij} \frac{p(M_i|I)}{p(M_j|I)}$$

The first term is called the Bayes Factor [1, 2] and the second is called the prior odds ratio. Interpration:

- Prior odds: the amount by which you favor M_i over M_j before taking data. There is no analog in frequentist statistics.
- Bayes Factor: the amount that the data D causes you favor M_i over M_j. Frequentist analog: *likelihood ratio* (but frequentists can't marginalize nuisance parameters)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Last Time: Occam Factors

We can express any likelihood of data D given a model M as the maximum value of its likelihood times an Occam factor:

$$p(D|M,I) = \mathcal{L}_{\max}\Omega_{\theta}$$

- The Occam factor corrects the likelihood for the statistical trials incurred by scanning the parameter space for θ̂.
- Occam's Razor: when selecting from among competing models, generally prefer the simpler model
- Statistical Trials: it becomes harder to reject the "null hypothesis" when the number of hypotheses in a test becomes large.

Example

You have a histogram and look for a spike in any one bin. The look-elsewhere effect: any bin could be a background fluctuation.

< □ > < □ > < □ > < □ > < □ > < □ >

Last Time: Systematic Uncertainties

There are two types of experimental uncertainties:

- 1. Random: uncertainties which can be reduced by acquiring and averaging more data (details on this next class)
- 2. **Systematic**: uncertainties which are fixed and tend to affect all measurements equally

Example

Calibrations of meters and rulers are a classic example of systematic uncertainties.

- Wooden meter sticks may shrink by several mm over time
- Energy scales in detectors may be uncertain due to other experimental or theoretical uncertainties
- ► Astronomical "rulers" have lots of systematic uncertainties, e.g., Hubble's constant H₀

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Effect of Priors

Uniform "Ignorance" Prior Coin flip example from [3]. We start with no preferred value for *h*:

Segev BenZvi (UR)

PHY 403

Effect of Priors

Unfair Coin Prior

We assume the coin is very unfair, but don't know the bias.

Segev BenZvi (UR)

PHY 403

Effect of Priors Zeros

- Ultimately the choice of priors will not really matter once you've taken enough data, unless your prior is really pathological
- Pathology: if your prior is zero somewhere in the range of interest, no amount of data will budge the posterior PDF off that zero
- This is doing the "right" thing: your zero prior is explicitly a statement that no amount of data will ever move you to accept some model or part of the parameter space
- ▶ OK, the system works... but usually you don't intend this behavior.
- ▶ Hang on, here comes a counterexample: you limit a quantity like m^2 to a physical region, so your prior is 0 for $m^2 < 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Caution: Parameterization Matters

From Oser: two theorists predict the mass of a new particle:

- 1. A: There should be a new particle whose mass is between 0 and 1 in rationalized uints. I have no other knowledge about the mass, so I'll assume it has equal chance of being between 0 and 1. I.e., p(m|I) = 1.
- 2. B: There is a particle described by a free parameter $y = m^2$. The true value of y must lie between 0 and 1, but otherwise I have no knowledge about it, so I choose p(y|I) = 1.

Both statements express ignorance about the same theory, but with different parameterizations.

$$p(y|I) = p(m|I) \left| \frac{dm}{dy} \right| \sim \frac{1}{\sqrt{y}}$$

Uh oh: transformation of variables makes a uniform prior non-uniform.

イロト 不得下 イヨト イヨト

Table of Contents

Review of Last Class Odds Ratio

- Occam Factors
- Effect of Priors

Principle of Indifference

- Uniform Prior
- Jeffreys Prior

3 Principle of Maximum Entropy

- Multinomial Distribution
- Shannon-Jaynes Entropy
- Maximization under Constraint
- Uniform Distribution Revisited
- Gaussian Distribution

Principle of Indifference

As a general rule, we want priors that do not inadvertently push us toward a result. We want non-informative priors. Principle of Indifference: given n > 1 mutually exclusive and exhaustive possibilities, each should be assigned a probability equal to 1/n.

Example

Drawing from a deck of cards, we apply the principle of indifference and assume the probability of selecting a given card is 1/52.

Example

Rolling dice with *n* faces, we assume the die lands on one face (exclusive possibility) with probability 1/6.

Example

Statistical mechanics: any two microstates of a system with the same energy are equally probable at equilibrium.

Principle of Indifference

Continuous Location Parameter

- Consider an event that we locate with respect to some origin (a "location parameter"
- ► Example: we are interested in p(X|I), where X = "the tallest tree in the woods is between x and x + dx."
- ▶ In the problem, x is measured with respect to some origin. What if we change the origin so that $x \rightarrow x' = x + c$?
- In the limit of complete ignorance, our choice of prior must be completely indifferent to shifts in location. This implies

$$p(X|I) dX = p(X'|I) dX' = p(X'|I) d(X + c) = p(X'|I)dX$$

If we represent the PDF by f(x), then clearly

$$f(x) = f(x') = f(x+c) \implies f(x) = \text{constant}$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Uniform Prior

Continuous Location Parameter

- Since f(x)=constant, we must also have p(X|I) = constant.
- If we have upper and lower bounds on x (we know the dimensions of the woods), then

$$p(X|I) = \text{constant} = \frac{1}{x_{\max} - x_{\min}},$$

the uniform prior we have already used a few times.

- ► If the bounds x_{min} and x_{max} are not known, then technically p(X|I) is not normalized. It is called an improper prior.
- Note: improper priors can be used in parameter estimation problems, as long as the posterior distribution is normalized.
- Note: improper priors cannot be used in model selection problems, because the Occam factors depend on knowing the prior range for each model parameter.

・ロト ・聞ト ・ヨト ・ヨト

Principle of Indifference

Continuous Scale Parameter

- Consider a problem where we are interested in the mean lifetime of a particle. Lifetime is a scale parameter because it can only have positive values.
- We are interested in $p(\mathcal{T}|I)$, where $\mathcal{T}=$ "the "mean lifetime is between τ and $\tau + d\tau$."
- In the limit of complete ignorance, our prior must be indifferent to changes in scale β, e.g., if we change our time units τ → τ' = βτ:

$$p(\mathcal{T}|I) \ d\mathcal{T} = p(\mathcal{T}'|I) \ d\mathcal{T}' = p(\mathcal{T}'|I) \ d(\beta \mathcal{T}) = \beta p(\mathcal{T}'|I) \ d\mathcal{T}$$

If we represent the PDF by $g(\tau)$, then

$$g(au) = eta g(au') = eta g(eta au) \implies g(au) = ext{constant}/ au$$

Jeffreys Prior Continuous Scale Parameter

Since $g(\tau)$ =constant, we must also have

$$p(\mathcal{T}|I) = rac{ ext{constant}}{ au}$$

- This form of the prior is called the Jeffreys prior [1].
- If we have upper and lower bounds on au then

$$p(\mathcal{T}|I) = rac{1}{ au \ln \left(au_{\mathsf{max}} / au_{\mathsf{min}}
ight)}$$

- The Jeffreys prior is very convenient for problems in which we are ignorant about scale. It provides logarithmic uniformity via equal probability per decade.
- Note: using a uniform prior on a scale parameter will cause you to dramatically weight your PDF toward the highest decade.

(日) (同) (日) (日) (日)

Modified Jeffreys Prior

- The Jeffreys prior is not normalizable if a scale parameter like \(\tau\) can be zero.
- Alternative: modified Jeffreys prior, which becomes uniform for τ < a:

$$p(\mathcal{T}|I) = rac{1}{(au+a)\ln{((a+ au_{\max})/a)}}$$

Table of Contents

Review of Last Class Odds Ratio

- Odds Ratio
- Occam Factors
- Effect of Priors

2 Principle of Indifference

- Uniform Prior
- Jeffreys Prior

Principle of Maximum Entropy

- Multinomial Distribution
- Shannon-Jaynes Entropy
- Maximization under Constraint
- Uniform Distribution Revisited
- Gaussian Distribution

Principle of Maximum Entropy

- The Principle of Indifference, first developed by Bernoulli and Laplace, has a more quantitative form in the Principle of Maximum Entropy
- The probability distribution which bests represents the current state of knowledge is the one with the greatest entropy
- For a discrete probability distribution with values p_i, the uncertainty of the distribution is given by [4]

$$S(p_1,p_2,\ldots,p_n)=-\sum_{i=1}^n p_i \ln (p_i)$$

- ► *S* measures the information content of the distribution
- If we want to assign a prior that reflects our ignorance about a parameter, then we should assign a prior probability distribution that maximizes S

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intuition: Throwing Dice

PHY 403

Intuition: Weighted Die

Suppose we have a weighted die with unknown outcomes p_i, but we are told that

mean number of dots
$$=\sum_{i=1}^{6}i p_i = 4.$$

(Note: for a fair die, the mean is 3.5.)

► The probability of a given set of outcomes n = (n₁,..., n₆) is given by the multinomial distribution:

$$p(n_1,...,n_6|N,p_1,...,p_6) = \frac{N!}{n_1!...n_6!}p_1^{n_1} \times ... \times p_6^{n_6}$$

The quantity W = N!/(n₁!...n₆!), or multiplicity, represents the number of states available to any given outcome n.

▶ *n* with the largest multiplicity *W* is the most probable.

< ロト (同) (三) (三) (

Maximizing the Multiplicity

Let's maximize ln W and use Stirling's approximation (ln $N! \approx N \ln N - N$):

$$\ln W = N \ln N - N - \sum_{i=1}^{6} Np_i \ln Np_i + \sum_{i=1}^{6} Np_i, \text{ where } n_i = Np_i$$
$$= N \ln N - N - \sum_{i=1}^{6} Np_i \ln (Np_i) + \sum_{i=1}^{6} Np_i$$
$$= N \ln N - N - N \left(\sum_{i=1}^{6} p_i \ln p_i + \ln N \right) + N$$
$$= -N \sum_{i=1}^{6} p_i \ln p_i$$
$$= NS$$
$$\therefore W = \exp(NS)$$

N is the number of throws, and *S* is the entropy. Maximizing entropy maximizes W.

Segev BenZvi (UR)

Shannon-Jaynes Entropy

Up to now we have claimed total ignorance of the p_i , but what if there is some prior estimate m_i on the p_i ? Then

$$p(n_1, ..., n_M | N, p_1, ..., p_M) = \frac{N!}{n_1! \dots n_M!} m_1^{n_1} \times ... \times m_M^{n_M}$$

$$\ln p(n_1, ..., n_M | N, p_1, ..., p_M) = \sum_{i=1}^M n_i \ln m_i + \ln N! - \sum_{i=1}^M \ln n_i!$$

$$= \sum_{i=1}^M n_i \ln m_i - N \sum_{i=1}^M p_i \ln p_i$$

$$= N \left(\sum_{i=1}^M p_i \ln m_i - \sum_{i=1}^M p_i \ln p_i \right)$$

$$= -N \sum_{i=1}^M p_i \ln (p_i/m_i) = NS$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Shannon-Jaynes Entropy

We are left with the generalized Shannon-Jaynes entropy

$$S = -\sum_{i=1}^{M} p_i \ln \left(p_i / m_i
ight)$$

For the continuous case,

$$S = -\int p(x) \ln\left(\frac{p(x)}{m(x)}\right) dx$$

The quantity m(x) is called the Lebesgue measure and ensures that S is invariant under the change of variables $x \to x' = f(x)$ since m(x) and p(x) transform in the same way.

OK, now we're ready to explore the maximum entropy principle.

(日) (同) (日) (日) (日)

MaxEnt and the Principle of Indifference

• We want to find a set of probabilities p_1, \ldots, p_n that maximizes

$$S(p_1,\ldots,p_n)=-\sum_{i=1}^n p_i \ln p_i.$$

▶ If all of the *p_i* are independent, this implies

$$dS = \frac{\partial S}{\partial p_1} dp_1 + \ldots + \frac{\partial S}{\partial p_n} dp_n = 0$$

- But if the p_i are independent, then all of the coefficients are individually equal to 0.
- Conclusion: all of the p_i are equal; i.e., we need a uniform prior.
- Hence, the principle of maximum entropy is just a formal statement of the principle of ignorance.

MaxEnt and Constraints

Lagrange Undetermined Multipliers

Suppose we impose a constraint on the p_i of the general form
 C(p₁,..., p_n) = 0. Then

$$dC = \frac{\partial C}{\partial p_1} dp_1 + \ldots + \frac{\partial C}{\partial p_n} dp_n = 0$$

▶ We can combine dS and the constraint dC using a Lagrange multiplier:

$$dS - \lambda dC = 0$$

and therefore

$$dS - \lambda dC = \left(\frac{\partial S}{\partial p_1} - \lambda \frac{\partial C}{\partial p_1}\right) dp_1 + \ldots + \left(\frac{\partial S}{\partial p_n} - \lambda \frac{\partial C}{\partial p_n}\right) dp_n = 0$$

We set the first coefficient to zero, letting us solve for λ and giving M simultaneous equations for the p_i .

Segev BenZvi (UR)

イロト イポト イヨト イヨト

Normalization Constraint

• We can always start from the normalization constraint (sum rule):

$$C=\sum_{i=1}^n p_i=1$$

• Therefore, from $dS - \lambda dC = 0$ we have

$$d\left[-\sum_{i=1}^{M} p_{i} \ln \left(p_{i}/m_{i}\right) - \lambda \left(\sum_{i=1}^{M} p_{i} - 1\right)\right] = 0$$
$$d\left[-\sum_{i=1}^{M} p_{i} \ln p_{i} + \sum_{i=1}^{M} p_{i} \ln m_{i} - \lambda \left(\sum_{i=1}^{M} p_{i} - 1\right)\right] = 0$$
$$\sum_{i=1}^{M} \left(-\ln p_{i} - p_{i} \frac{\partial \ln p_{i}}{\partial p_{i}} + \ln m_{i} - \lambda \frac{\partial p_{i}}{\partial p_{i}}\right) dp_{i} = 0$$
$$\sum_{i=1}^{M} \left(-\ln \left(p_{i}/m_{i}\right) - 1 - \lambda\right) dp_{i} = 0$$

Normalization Constraint Derivation of Uniform Distribution

 Allowing the p_i to vary independently implies that all of the coefficients must vanish, so that

$$-\ln(p_i/m_i) - 1 - \lambda = 0 \implies p_i = m_i e^{-(1+\lambda)}$$

• Since $\sum p_i = 1$ and $\sum m_i = 1$,

$$\sum_{i=1}^{M} m_i e^{-(1+\lambda)} = 1 = e^{-(1+\lambda)} \sum_{i=1}^{M} m_i$$

Thus, $\lambda = -1$ and

$$p_i = m_i$$

If our prior information tells us that m_i = constant, then p_i describe a uniform distribution.

イロト 不得下 イヨト イヨト 二日

Gaussian: Known Mean and Variance

Suppose you have a continous variable x and you constrain the mean to be μ and the variance to be σ²:

$$\int_{x_L}^{x_H} p(x) \, dx = 1$$
$$\int_{x_L}^{x_H} x \, p(x) \, dx = \mu$$
$$\int_{x_L}^{x_H} (x - \mu)^2 \, p(x) \, dx = \sigma^2$$

In the limit that the variance is small compared to the range of the parameter, i.e.,

$$rac{x_H-\mu}{\sigma}\gg 1$$
 and $rac{\mu-x_L}{\sigma}\gg 1$

then it turns out the maximum entropy distribution with this variance is Gaussian:

$$p(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$$

Utility of the Gaussian

- Suppose your data are scattered around your model with an unknown error distribution.
- It turns out that the most conservative thing you can assume (in a maximum entropy sense) is the Gaussian distribution.
- By "conservative" we mean that the Gaussian will give a greater uncertainty than what you would get from a more appropriate distribution based on more information.
- Wait, isn't that bad?
- No: for model fitting, a Gaussian model of the uncertainties is a safe choice. Other distributions may give you artificially tight constraints unless you have appropriate prior information.

• • = • • = •

Summary

- We like to identify uniform priors for inference in physics problems
- We have to be careful about transforming variables because uniform priors may not stay uniform under changes of variables
 - Uniform Prior: appropriate for a location parameter
 - Jeffreys Prior: appropriate for a scale parameter
- We have intuitively been picking uninformative priors using the Principle of Indifference
- This principle can be made quantitative using the Principle of Maximum Entropy, which tells us that the least informative prior is the one which maximizes

$$S = -\sum_{i=1}^{N} p_i \ln \left(p_i / m_i \right)$$

By maximizing S under different constraints we can derive the PDFs used earlier in the course.

< □ > < □ > < □ > < □ > < □ > < □ >

References I

- [1] Harold Jeffreys. The Theory of Probability. 3rd ed. Oxford, 1961.
- [2] Robert E. Kass and Adrian E. Raftery. "Bayes Factors". In: J. Am. Stat. Assoc. 90.430 (1995), pp. 773-795. URL: http://amstat. tandfonline.com/doi/abs/10.1080/01621459.1995.10476572.
- [3] D.S. Sivia and John Skilling. Data Analysis: A Bayesian Tutorial. New York: Oxford University Press, 1998.
- [4] Claude E. Shannon. "A Mathematical Theory of Communication". In: Bell Sys. Tech. J. 27 (1948), pp. 379–423.

· · · · · · · · ·