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Last Time

I The quadratic approximation of the PDF in more than one dimension:

p(x |D, I ) ∝ exp
[
(x − x̂)>H(x̂)(x − x̂)

]
I The Hessian matrix H(x̂) is an N × N symmetric matrix with

components

Hij =
∂2L

∂xi∂xj

∣∣∣∣
x̂i ,x̂j

where
L = ln p

I The covariance matrix Σ is related to the negative of the inverse
Hessian matrix:

[Σ]ij = [−H−1]ij
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Geometric Intuition
I The uncertainty contours (in 2D)

define an ellipse whose principal axes
are the eigenvectors of H

I When the covariance
cov (xi , xj) = 0, the ellipse is aligned
with xi and xj

I When the covariance is nonzero the
ellipse is tilted. In this case, a
rotation can remove the covariances;
there exists an orthogonal matrix of
the eigenvectors of H which
diagonalizes the Hessian:

D = O>HO,

O =
(
e1 e2 . . . eN

)
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Geometric Intuition

I When working from a joint
distribution p(x , y , . . . |D, I ), the
uncertainty on the estimator x (for
example) requires you to calculate

p(x |D, I ) =∫
p(x , y , z , . . . |D, I ) dy dz . . .

I Remember that this is different from
calculating the width of the joint
distribution at the maximum

I The width of the contour at the
maximum will underestimate the
width of p(x |D, I )

Segev BenZvi (UR) PHY 403 5 / 34



Estimating µ if µ and σ are Unknown
Student-t Distribution

I If we have Gaussian data with unknown µ and σ, the resulting
marginal distribution for µ is

p(µ|D, I ) ∝

[
N∑
i=1

(xi − µ)2

]−(N−1)/2

if we use a uniform prior for σ. If we use a Jeffreys prior,

p(µ|D, I ) ∝

[
N∑
i=1

(xi − µ)2

]−N/2
I The width estimator is the usual sample variance

s2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 =
1

N − 1

N∑
i=1

(xi − x̄)2

for the uniform prior, and narrower (∝ 1/N) if using Jeffreys prior
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Estimating σ if µ and σ are Unknown
χ2 Distribution

I If we have Gaussian data with unknown µ and σ, the resulting
marginal distribution for σ is

p(σ|D, I ) ∝ σ−(N−1) exp
(
− V

2σ2

)
, V =

N∑
i=1

(xi − x̄)2

if we use a uniform prior for σ. If we use a Jeffreys prior,

p(σ|D, I ) ∝ σ−N exp
(
− V

2σ2

)
I σ̂2 = s2, and the reliability of the width estimator is

σ = σ̂ ± σ̂√
2(N − 1)

.

The marginal PDF is equivalent to the χ2
2(N−1) distribution.
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Methods for Automatic Minimization

I Getting the best estimate of a PDF means calculating its maximum.
Sometimes this cannot be done analytically

I Brute force approach: just plot the PDF on a grid of points and
visually pick out the maximum

I Unfortunately, this becomes impractical as the dimensionality of the
problem grows

I Issue 1: visualizing a maximum in more than 2D is hard
I Issue 2: computational expense. For a problem with N dimensions,

evaluating 10 points on each axis requires 10N calculations
I Issue 3: a regular grid could miss narrow features in the PDF
I So we need other methods to find the maximum of a function. Most

popular methods linearize the problem
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Method of Steepest Descent

I How do we automatically minimize a
multivariable function f (x), or maximize
−f (x)?

I Steepest Descent: given a point a, f (x)
decreases fastest in the direction

−∇f (a)

I Start with a guess x0 and update:

xn+1 = xn − γn∇f (xn), n ≥ 0

I Control the step size with γn
I Keep iterating until (hopefully) xn

converges to a local minimum
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Method of Steepest Descent
Known Issues

I There are several known issues with the steepest descent algorithm
I For example, if the sequence steps into a “valley” along the minimum

it can start zig-zagging along the walls

I This can make the algorithm quite slow as it approaches the minimum
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Method of Steepest Descent
Behavior in the Valley

I The figure below shows why the steepest descent algorithm oscillates
back and forth when you enter a valley [1]

I A step starts off in the local gradient direction perpendicular to the
contour lines

I The step traverses a straight line until a local minimum is reached,
where the traverse is parallel to the local contour lines

I Next update is perpendicular to the last direction. Result: S-L-O-W
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Quadratic Approximation

I Suppose we Taylor-expand our function f (x) about some arbitrary
point x ′, so that

f (x) = f (x ′) + (x − x ′)>∇f (x ′) +
1
2

(x − x ′)>∇∇f (x ′)(x − x ′) + . . .

≈ f (x ′) + (x − x ′)>∇f (x ′) +
1
2

(x − x ′)>H(x ′)(x − x ′)

where H(x ′) = ∇∇f (x ′) is the Hessian matrix of f
I Differentiating f with respect to the {xi} gives

∇f (x) ≈ ∇f (x ′) + H(x ′)(x − x ′)

I If we demand ∇f (x̂) = 0, since we’re at an extremum, we obtain

x̂ ≈ x ′ − [H(x ′)]−1∇f (x ′)
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Newton’s Method

I This expression suggests an iterative
scheme for approaching a minimum:

xn+1 = xn − [H(xn)]−1∇f (xn), n ≥ 0

I Intuition: each iteration approximates
f (x) by a quadratic function and takes
a step toward the minimum of the
function

I If f (x) is quadratic, the extremum will
be found in exactly one step

I When the quadratic approximation is
reasonable, this method will converge to
the minimum much faster than the
steepest descent algorithm
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Newton’s Method
Computational Tricks

I The stability of the iterations can be improved by reducing the step
size by some positive factor γ < 1:

xn+1 = xn − γ[H(xn)]−1∇f (xn), n ≥ 0

I Note: in N dimensions, inverting H takes O(N3) operations
I Instead of inverting, calculate the vector pn = [H(xn)]−1∇f (xn) as

the solution to the system of linear equations

H(xn) · pn = ∇f (xn)

I Methods to solve this equation, like the conjugate gradient (CG)
technique [1], require u>H(xn)u > 0 for any real nonzero vector u.

I Jargon: the Hessian must be positive definite. This is a useful
diagnostic, e.g., it tells you if the iteration converged to a saddle point
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Newton’s Method
Known Issues

I Because ∇f (x̂) = 0 is just the condition for a stationary point,
Newton’s method can diverge if x0 is far from the optimal solution

I In the figure (left) we want to find the maximum of the PDF. It’s
roughly quadratic so Newton’s method converges rapidly

I On the right, if we start out in the tails of the function (outside the
dotted lines) the algorithm will not converge to the maximum

I Solution: start with a good first guess. Can use an algorithm that
doesn’t depend on the gradient, like simplex minimization
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Definition of a Simplex
I A simplex is basically a “hyper-triangle” in n

dimensions.
I E.g., the n-simplex ∆n is the subset of Rn+1 such that

∆n = {(t0, · · · , tn) ∈ Rn+1 |
n∑

i=0

ti = 1

and ti ≥ 0 for all i}

I Simplex/Nelder-Mead Technique [2]: start with N + 1
points p0 and pi (i = 1 . . .N) such that

pi = p0 + λei

I The points define a simplex for your N-dimensional
parameter space. Try to move the simplex around and
shrink/expand it until it contains the optimal point
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Downhill Simplex (Nelder-Mead) Algorithm

I Define the starting point for the simplex
I Pick out the point in the simplex where

f (x) is largest
I Reflect this point through the opposite face

of the simplex to a lower point
I Shrink or expand the simplex to conserve its

volume
I The simplex will crawl, amoeba-like, toward

the minimum
I Advantage: no need to calculate the

gradient. Use result as a starting point for
Newton’s method

I Disadvantage: convergence issues if initial
simplex is too small
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Difficult Problem: Multimodal Parameter Space
I Often you’ll find that your parameter space is complex, with multiple

minima and maxima

I The algorithms we have discussed so far will run as quickly as possible
to the nearest minimum

I There is no way for you to guarantee that you have gotten to the
global minimum rather than a local minimum
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Simulated Annealing
I Starting from xn, randomly generate a new point

xn+1 = xn + ∆x

I Calculate a probability

p = exp
{
− f (xn+1)− f (xn)

kT

}
for keeping the point, and generate a random number u ∈ [0, 1]. If
u < p, move to xn+1. Otherwise, stay at xn.

I For large T , the probability of accepting new points (even “bad”
moves) is high. For small T , the probability to accept new points is
low

I Idea: start with a high T to help you jump out of local minima, then
slowly reduce the temperature. Slow cooling helps you find the global
minimum energy state, like annealing a piece of metal [3]
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Markov Chain Monte Carlo

I The technique of choosing p to sample states of a thermodynamic
system is called the Metropolis-Hastings algorithm [4]

I Simulated annealing depends on an annealing schedule for moving
T → 0, which you have to tune. Also, there is no guarantee of
convergence to the global minimum in a finite time

I Another approach: run a large number of simulations at different
temperatures, letting each one randomly walk through the parameter
space

I This technique is called Markov Chain Monte Carlo (MCMC), and can
be used to simulate exploration of all important parts of a parameter
space

I MCMC methods have become central to Bayesian analysis. We’ll talk
about how and why in a couple of weeks

Segev BenZvi (UR) PHY 403 21 / 34



Popular Libraries
scipy.optimize
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Popular Libraries
ROOT TMinuit

ROOT has a C++ version of the “popular” MINUIT non-linear function
minimizer. Three minimization algorithms are available:
1. Steepest descent (MIGRAD): evaluates gradient and second

derivatives (Hessian) numerically. Assumes symmetric Gaussian errors
2. MINOS: relaxes error assumption, allows asymmetric error bars
3. Simplex: does not require evaluation of derivatives

If you’ve ever used this before, you know it requires a lot of hand-tuning.
The going gets very rough in high-D if the parameter space is bumpy
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Maximum Likelihood Technique

I The method of maximum likelihood is an extremely important
technique used in frequentist statistics

I There is no mystery to it. Here is the connection to the Bayesian
view: given parameters x and data D, Bayes’ Theorem tells us that

p(x |D, I ) ∝ p(D|x , I ) p(x |I )

where we ignore the marginal evidence p(D|I )
I Suppose p(x |I ) = constant for all x . Then

p(x |D, I ) ∝ p(D|x , I )

and the best estimator x̂ is simply the value that maximizes the
likelihood p(D|x , I )

I So the method of maximum likelihood for a frequentist is equivalent
to maximizing the posterior p(x |D, I ) with uniform priors on the {xi}.
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Connection to χ2

I Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is

p(Di |x , I ) =
1√
2πσi

exp
[
−(Fi − Di )

2

2σ2
i

]
, p(D|x , I ) =

N∏
i=1

p(Di |x , I ),

where we defined the functional relationship between x and the ideal
(noiseless) data F as

Fi = f (x , i)

I If we define χ2 as the sum of the squares of the normalized residuals
(Fi − Di )/σi , then

χ2 =
N∑
i=1

(Fi − Di )
2

σ2
i

=⇒ p(D|x , I ) ∝ exp
(
−χ

2

2

)
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Maximum Likelihood and Least Squares

I With a uniform prior on x , the logarithm of the posterior PDF is

L = ln p(x |D, I ) = constant− χ2

2

I The maximum of the posterior (and likelihood) will occur when χ2 is a
minimum. Hence, the optimal solution x̂ is called the least squares
estimate

I Least squares/maximum likelihood is used all the time in data
analysis, but...

I Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes’ Theorem reduces to if:

1. Your prior on your parameters is uniform
2. The uncertainties on your data are Gaussian

I If one of these conditions isn’t met, then use Bayes’ Theorem to derive
something else
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Maximum Likelihood: Poisson Case
I Suppose that our data aren’t Gaussian, but a set of Poisson counts n

with expectation values ν. E.g., we are dealing with binned data in a
histogram. Then the likelihood becomes

p(n|ν, I ) =
N∏
i=1

νnii e−νi

ni !

I In the limit N → large, this becomes

p(ni |νi , I ) ∝ exp

[
−

N∑
i=1

(ni − νi )2

2νi

]

I The corresponding χ2 statistic is given by

χ2 =
N∑
i=1

(ni − νi )2

νi
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Justifications for Using Least Squares
I Nice property: as N →∞, the χ2 statistic asymptotically approaches

the value
χ2
N−m,

where N is the number of data points and m is the number of
parameters in x .

I I.e., the statistic approximates a χ2 distribution with N −m degrees of
freedom... if the uncertainties in the data are Gaussian

I Our definition of χ2 as the quadrature sum (or l2-norm) of the
residuals makes a lot of calculations easy, but it isn’t particularly
robust

I Note: the l1-norm

l1-norm =
N∑
i=1

∣∣∣∣Fi − Di

σi

∣∣∣∣
is much more robust against outliers in the data
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Application: Fitting a Straight Line to Data

Example
Suppose we have N measurements yi with Gaussian uncertainties σi
measured at positions xi .

Given the straight line model yi = mxi + b, what are the best estimators of
the parameters m and b?
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Minimize the χ2

Letting Fi = mxi + b and Di = yi , the χ2 is

χ2 =
N∑
i=1

(mxi + b − yi )2
σ2
i

Minimizing χ2 as a function of the parameters gives

∂χ2

∂m
=

N∑
i=1

2(mxi + b − yi )xi
σ2
i

and
∂χ2

∂b
=

N∑
i=1

2(mxi + b − yi )

σ2
i

Rewritten as a matrix equation, this becomes

∇χ2 =

(
A C
C B

)(
m
b

)
−
(
p
q

)
= 0

A =
∑

x2
i wi , B =

∑
wi , C =

∑
xiwi , p =

∑
xiyiwi , q =

∑
yiwi
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Best Estimators of a Linear Function

I Inverting the matrix, we find that

m̂ =
Bp − Cq

AB − C 2 and b̂ =
Aq − Cp

AB − C 2

I The covariance matrix is found by evaluating [2∇∇χ2]−1:(
σ2
m σmb

σmb σ2
b

)
= 2

(
A C
C B

)−1

=
2

AB − C 2

(
B −C
−C A

)
I We note that even though the data {yi} are independent, the

parameters m̂ and b̂ end up anticorrelated due to the off-diagonal
terms in the covariance matrix

I This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y -intercept b
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Summary

I You will often find the need to maximize a likelihood (or minimize a
χ2 or negative log likelihood) automatically

I Various algorithms available (simplex, Newton, etc.) with trade offs
between speed and accuracy

I All algorithms are sensitive, to some degree or another, to the starting
position of the minimization

I Maximum likelihood: same as maximizing a posterior PDF when the
priors on the parameters are uniform

I Maximizing the likelihood is the same as minimizing χ2 in the case
where the uncertainties on the data are Gaussian

I In case of Gaussian uncertainties, there is asymptotic convergence of
the maximum likelihood to the χ2 distribution:

χ2 = −2 ln L ∼ χ2
N−m
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