Physics 403 Numerical Methods,

Numerical Methods, Maximum Likelihood, and Least Squares

Segev BenZvi

Department of Physics and Astronomy University of Rochester

Table of Contents

Review of Last Class

- Quadratic Approximation in N Dimensions
- Estimating μ if μ , σ Unknown
- Estimating σ if μ , σ Unknown

Function Minimization

- Method of Steepest Descent
- Newton's Method
- Simplex Method
- Multimodal PDFs: Simulated Annealing
- Minimizers in Python and ROOT

Maximum Likelihood and the Method of Least Squares

- Gaussian and Poisson Cases
- Fitting a Line to Data

3 × 4 3 ×

Last Time

The quadratic approximation of the PDF in more than one dimension:

$$p(\boldsymbol{x}|D, I) \propto \exp\left[(\boldsymbol{x} - \hat{\boldsymbol{x}})^{\top} \boldsymbol{H}(\hat{\boldsymbol{x}})(\boldsymbol{x} - \hat{\boldsymbol{x}})
ight]$$

• The Hessian matrix $H(\hat{x})$ is an $N \times N$ symmetric matrix with components

$$H_{ij} = \frac{\partial^2 L}{\partial x_i \partial x_j} \bigg|_{\hat{x}_i, \hat{x}_j}$$

where

 $L = \ln p$

The covariance matrix Σ is related to the negative of the inverse Hessian matrix:

$$[\boldsymbol{\Sigma}]_{ij} = [-\boldsymbol{H}^{-1}]_{ij}$$

・聞き ・ 国を ・ 国を

Geometric Intuition

- The uncertainty contours (in 2D) define an ellipse whose principal axes are the eigenvectors of *H*
- When the covariance cov (x_i, x_j) = 0, the ellipse is aligned with x_i and x_j
- When the covariance is nonzero the ellipse is tilted. In this case, a rotation can remove the covariances; there exists an orthogonal matrix of the eigenvectors of *H* which diagonalizes the Hessian:

PHY 403

Geometric Intuition

▶ When working from a joint distribution p(x, y, ... |D, I), the uncertainty on the estimator x (for example) requires you to calculate

$$p(x|D, I) = \int p(x, y, z, \dots | D, I) \, dy \, dz \, \dots$$

- Remember that this is different from calculating the width of the joint distribution at the maximum
- ► The width of the contour at the maximum will underestimate the width of p(x|D, I)

Estimating μ if μ and σ are Unknown ${}^{\rm Student-{\it t}}$ Distribution

If we have Gaussian data with unknown μ and σ, the resulting marginal distribution for μ is

$$p(\mu|D,I) \propto \left[\sum_{i=1}^{N} (x_i - \mu)^2\right]^{-(N-1)/2}$$

if we use a uniform prior for σ . If we use a Jeffreys prior,

$$p(\mu|D,I) \propto \left[\sum_{i=1}^{N} (x_i - \mu)^2\right]^{-N/2}$$

The width estimator is the usual sample variance

$$s^2 = rac{1}{N-1}\sum_{i=1}^N (x_i - \hat{\mu})^2 = rac{1}{N-1}\sum_{i=1}^N (x_i - \bar{x})^2$$

for the uniform prior, and narrower $(\propto 1/N)$ if using Jeffreys prior

Estimating σ if μ and σ are Unknown $_{\chi^2 \mbox{ Distribution}}$

• If we have Gaussian data with unknown μ and σ , the resulting marginal distribution for σ is

$$p(\sigma|D, I) \propto \sigma^{-(N-1)} \exp\left(-\frac{V}{2\sigma^2}\right), \qquad V = \sum_{i=1}^N (x_i - \bar{x})^2$$

if we use a uniform prior for $\sigma.$ If we use a Jeffreys prior,

$$p(\sigma|D, I) \propto \sigma^{-N} \exp\left(-rac{V}{2\sigma^2}
ight)$$

• $\hat{\sigma}^2 = s^2$, and the reliability of the width estimator is

$$\sigma = \hat{\sigma} \pm \frac{\hat{\sigma}}{\sqrt{2(N-1)}}.$$

The marginal PDF is equivalent to the $\chi^2_{2(N-1)}$ distribution.

Table of Contents

Review of Last Class

- Quadratic Approximation in N Dimensions
- Estimating μ if μ , σ Unknown
- Estimating σ if μ , σ Unknown

Function Minimization

- Method of Steepest Descent
- Newton's Method
- Simplex Method
- Multimodal PDFs: Simulated Annealing
- Minimizers in Python and ROOT

Maximum Likelihood and the Method of Least Squares

- Gaussian and Poisson Cases
- Fitting a Line to Data

Methods for Automatic Minimization

- Getting the best estimate of a PDF means calculating its maximum.
 Sometimes this cannot be done analytically
- Brute force approach: just plot the PDF on a grid of points and visually pick out the maximum
- Unfortunately, this becomes impractical as the dimensionality of the problem grows
- Issue 1: visualizing a maximum in more than 2D is hard
- Issue 2: computational expense. For a problem with N dimensions, evaluating 10 points on each axis requires 10^N calculations
- ► Issue 3: a regular grid could miss narrow features in the PDF
- So we need other methods to find the maximum of a function. Most popular methods linearize the problem

A = A = A

Method of Steepest Descent

- How do we automatically minimize a multivariable function f(x), or maximize -f(x)?
- Steepest Descent: given a point a, f(x) decreases fastest in the direction

 $-\nabla f(\boldsymbol{a})$

• Start with a guess x_0 and update:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla f(\mathbf{x}_n), \ n \ge 0$$

- Control the step size with γ_n
- Keep iterating until (hopefully) x_n converges to a local minimum

Method of Steepest Descent

Known Issues

- ► There are several known issues with the steepest descent algorithm
- For example, if the sequence steps into a "valley" along the minimum it can start zig-zagging along the walls

> This can make the algorithm quite slow as it approaches the minimum

イロト イポト イヨト イヨト

Method of Steepest Descent Behavior in the Valley

The figure below shows why the steepest descent algorithm oscillates back and forth when you enter a valley [1]

- A step starts off in the local gradient direction perpendicular to the contour lines
- The step traverses a straight line until a local minimum is reached, where the traverse is parallel to the local contour lines
- Next update is perpendicular to the last direction. Result: S-L-O-W

Quadratic Approximation

Suppose we Taylor-expand our function f(x) about some arbitrary point x', so that

$$f(\mathbf{x}) = f(\mathbf{x}') + (\mathbf{x} - \mathbf{x}')^{\top} \nabla f(\mathbf{x}') + \frac{1}{2} (\mathbf{x} - \mathbf{x}')^{\top} \nabla \nabla f(\mathbf{x}') (\mathbf{x} - \mathbf{x}') + \dots$$
$$\approx f(\mathbf{x}') + (\mathbf{x} - \mathbf{x}')^{\top} \nabla f(\mathbf{x}') + \frac{1}{2} (\mathbf{x} - \mathbf{x}')^{\top} \mathbf{H}(\mathbf{x}') (\mathbf{x} - \mathbf{x}')$$

where $H(\mathbf{x}') = \nabla \nabla f(\mathbf{x}')$ is the Hessian matrix of f

• Differentiating f with respect to the $\{x_i\}$ gives

$$abla f(\mathbf{x}) pprox
abla f(\mathbf{x}') + \mathbf{H}(\mathbf{x}')(\mathbf{x} - \mathbf{x}')$$

• If we demand $\nabla f(\hat{x}) = 0$, since we're at an extremum, we obtain

$$\hat{\boldsymbol{x}} \approx \boldsymbol{x}' - [\boldsymbol{H}(\boldsymbol{x}')]^{-1} \nabla f(\boldsymbol{x}')$$

(日) (同) (日) (日) (日)

Newton's Method

This expression suggests an iterative scheme for approaching a minimum:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [\mathbf{H}(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n), \quad n \ge 0$$

- Intuition: each iteration approximates
 f(x) by a quadratic function and takes
 a step toward the minimum of the function
- If f(x) is quadratic, the extremum will be found in exactly one step
- When the quadratic approximation is reasonable, this method will converge to the minimum much faster than the steepest descent algorithm

Newton's Method Computational Tricks

► The stability of the iterations can be improved by reducing the step size by some positive factor γ < 1:</p>

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [\mathbf{H}(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n), \quad n \ge 0$$

- ▶ Note: in *N* dimensions, inverting *H* takes $\mathcal{O}(N^3)$ operations
- ► Instead of inverting, calculate the vector $\boldsymbol{p}_n = [\boldsymbol{H}(\boldsymbol{x}_n)]^{-1} \nabla f(\boldsymbol{x}_n)$ as the solution to the system of linear equations

$$\boldsymbol{H}(\boldsymbol{x}_n) \cdot \boldsymbol{p}_n = \nabla f(\boldsymbol{x}_n)$$

- ▶ Methods to solve this equation, like the conjugate gradient (CG) technique [1], require u^T H(x_n)u > 0 for any real nonzero vector u.
- Jargon: the Hessian must be positive definite. This is a useful diagnostic, e.g., it tells you if the iteration converged to a saddle point

(日) (周) (日) (日) (日)

Newton's Method

Known Issues

Because ∇f(x̂) = 0 is just the condition for a stationary point, Newton's method can diverge if x₀ is far from the optimal solution

- In the figure (left) we want to find the maximum of the PDF. It's roughly quadratic so Newton's method converges rapidly
- On the right, if we start out in the tails of the function (outside the dotted lines) the algorithm will not converge to the maximum
- Solution: start with a good first guess. Can use an algorithm that doesn't depend on the gradient, like simplex minimization

Definition of a Simplex

- ► A simplex is basically a "hyper-triangle" in *n* dimensions.
- E.g., the *n*-simplex Δ^n is the subset of \mathbb{R}^{n+1} such that

$$\Delta^n = \{(t_0, \cdots, t_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n t_i = 1$$

and $t_i \ge 0$ for all $i\}$

Simplex/Nelder-Mead Technique [2]: start with N + 1 points p₀ and p_i (i = 1...N) such that

$$\boldsymbol{p}_i = \boldsymbol{p}_0 + \lambda \boldsymbol{e}_i$$

The points define a simplex for your N-dimensional parameter space. Try to move the simplex around and shrink/expand it until it contains the optimal point

Downhill Simplex (Nelder-Mead) Algorithm

- Define the starting point for the simplex
- Pick out the point in the simplex where f(x) is largest
- Reflect this point through the opposite face of the simplex to a lower point
- Shrink or expand the simplex to conserve its volume
- The simplex will crawl, amoeba-like, toward the minimum
- Advantage: no need to calculate the gradient. Use result as a starting point for Newton's method
- Disadvantage: convergence issues if initial simplex is too small

Difficult Problem: Multimodal Parameter Space

 Often you'll find that your parameter space is complex, with multiple minima and maxima

- The algorithms we have discussed so far will run as quickly as possible to the nearest minimum
- There is no way for you to guarantee that you have gotten to the global minimum rather than a local minimum

Segev BenZvi (UR)

Simulated Annealing

Starting from x_n , randomly generate a new point

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \Delta \mathbf{x}$$

Calculate a probability

$$p = \exp\left\{-\frac{f(\mathbf{x}_{n+1}) - f(\mathbf{x}_n)}{kT}\right\}$$

for keeping the point, and generate a random number $u \in [0, 1]$. If u < p, move to x_{n+1} . Otherwise, stay at x_n .

- For large T, the probability of accepting new points (even "bad" moves) is high. For small T, the probability to accept new points is low
- Idea: start with a high T to help you jump out of local minima, then slowly reduce the temperature. Slow cooling helps you find the global minimum energy state, like annealing a piece of metal [3]

Markov Chain Monte Carlo

- The technique of choosing p to sample states of a thermodynamic system is called the Metropolis-Hastings algorithm [4]
- Simulated annealing depends on an annealing schedule for moving T → 0, which you have to tune. Also, there is no guarantee of convergence to the global minimum in a finite time
- Another approach: run a large number of simulations at different temperatures, letting each one randomly walk through the parameter space
- This technique is called Markov Chain Monte Carlo (MCMC), and can be used to simulate exploration of all important parts of a parameter space
- MCMC methods have become central to Bayesian analysis. We'll talk about how and why in a couple of weeks

・ 得 ト ・ ヨ ト ・ ヨ ト

Popular Libraries

scipy.optimize

scipy.optimize.minimize

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None) [source] Minimization of scalar function of one or more variables New in version 0.11.0. Parameters: fun : callable Objective function. x0 : ndarray Initial guess. args : tuple, optional Extra arguments passed to the objective function and its derivatives (Jacobian, Hessian). method : str or callable, optional Type of solver. Should be one of 'Nelder-Mead' 'Powell' 'CG' • 'BFGS' 'Newton-CG' 'Anneal (deprecated as of scipy version 0.14.0)' 'L-BEGS-B' 'TNC' 'COBYLA' 'SLSOP' 'dogleg' 'trust-ncg' custom - a callable object (added in version 0.14.0) If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending if the problem has

constraints or bounds.

3

イロト イポト イヨト イヨト

Popular Libraries

ROOT has a C++ version of the "popular" MINUIT non-linear function minimizer. Three minimization algorithms are available:

- 1. Steepest descent (MIGRAD): evaluates gradient and second derivatives (Hessian) numerically. Assumes symmetric Gaussian errors
- 2. MINOS: relaxes error assumption, allows asymmetric error bars
- 3. Simplex: does not require evaluation of derivatives

If you've ever used this before, you know it requires a lot of hand-tuning. The going gets very rough in high-D if the parameter space is bumpy

(日) (同) (三) (三)

Table of Contents

Review of Last Class

- Quadratic Approximation in N Dimensions
- Estimating μ if μ , σ Unknown
- Estimating σ if μ , σ Unknown

Function Minimization

- Method of Steepest Descent
- Newton's Method
- Simplex Method
- Multimodal PDFs: Simulated Annealing
- Minimizers in Python and ROOT

Maximum Likelihood and the Method of Least Squares

- Gaussian and Poisson Cases
- Fitting a Line to Data

Maximum Likelihood Technique

- The method of maximum likelihood is an extremely important technique used in frequentist statistics
- There is no mystery to it. Here is the connection to the Bayesian view: given parameters x and data D, Bayes' Theorem tells us that

$$p(\boldsymbol{x}|\boldsymbol{D},l) \propto p(\boldsymbol{D}|\boldsymbol{x},l) \ p(\boldsymbol{x}|l)$$

where we ignore the marginal evidence p(D|I)

Suppose $p(\mathbf{x}|I) = \text{constant for all } \mathbf{x}$. Then

 $p(\boldsymbol{x}|\boldsymbol{D},l) \propto p(\boldsymbol{D}|\boldsymbol{x},l)$

and the best estimator \hat{x} is simply the value that maximizes the likelihood p(D|x, l)

So the method of maximum likelihood for a frequentist is equivalent to maximizing the posterior p(x|D, l) with uniform priors on the {x_i}.

・ロ・ ・ 聞 ・ ・ 国 ・ ・ 国 ・

Connection to χ^2

Suppose our data *D* are identical independent measurements with Gaussian uncertainties. Then the likelihood is

$$p(D_i|\mathbf{x}, I) = rac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-rac{(F_i - D_i)^2}{2\sigma_i^2}
ight], \quad p(\mathbf{D}|\mathbf{x}, I) = \prod_{i=1}^N p(D_i|\mathbf{x}, I),$$

where we defined the functional relationship between \boldsymbol{x} and the ideal (noiseless) data \boldsymbol{F} as

$$F_i = f(\mathbf{x}, i)$$

• If we define χ^2 as the sum of the squares of the normalized residuals $(F_i - D_i)/\sigma_i$, then

$$\chi^2 = \sum_{i=1}^{N} \frac{(F_i - D_i)^2}{\sigma_i^2} \implies p(\boldsymbol{D}|\boldsymbol{x}, I) \propto \exp\left(-\frac{\chi^2}{2}\right)$$

Maximum Likelihood and Least Squares

▶ With a uniform prior on *x*, the logarithm of the posterior PDF is

$$L = \ln p(\mathbf{x}|\mathbf{D}, I) = \text{constant} - \frac{\chi^2}{2}$$

- The maximum of the posterior (and likelihood) will occur when χ² is a minimum. Hence, the optimal solution x̂ is called the least squares estimate
- Least squares/maximum likelihood is used all the time in data analysis, but...
- Note: there is nothing mysterious or even fundamental about this; least squares is what Bayes' Theorem reduces to if:
 - 1. Your prior on your parameters is uniform
 - 2. The uncertainties on your data are Gaussian
- If one of these conditions isn't met, then use Bayes' Theorem to derive something else

・ 日本 ・ 日本 ・ 日本

Maximum Likelihood: Poisson Case

Suppose that our data aren't Gaussian, but a set of Poisson counts n with expectation values v. E.g., we are dealing with binned data in a histogram. Then the likelihood becomes

$$p(\boldsymbol{n}|\boldsymbol{\nu}, l) = \prod_{i=1}^{N} \frac{\nu_i^{n_i} e^{-\nu_i}}{n_i!}$$

• In the limit $N \rightarrow$ large, this becomes

$$p(n_i|\nu_i, I) \propto \exp\left[-\sum_{i=1}^N \frac{(n_i - \nu_i)^2}{2\nu_i}
ight]$$

 \blacktriangleright The corresponding χ^2 statistic is given by

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

過き イヨト イヨト

Justifications for Using Least Squares

 \blacktriangleright Nice property: as ${\it N} \to \infty,$ the χ^2 statistic asymptotically approaches the value

 $\chi^2_{\rm M}$ m

where N is the number of data points and m is the number of parameters in x.

- ► I.e., the statistic approximates a \(\chi^2\) distribution with \(N m\) degrees of freedom... if the uncertainties in the data are Gaussian
- ► Our definition of \(\chi^2\) as the quadrature sum (or \(\lambda_2\)-norm) of the residuals makes a lot of calculations easy, but it isn't particularly robust
- ► Note: the *I*₁-norm

$$l_{1}$$
-norm = $\sum_{i=1}^{N} \left| \frac{F_{i} - D_{i}}{\sigma_{i}} \right|$

is much more robust against outliers in the data

Application: Fitting a Straight Line to Data

Example

Suppose we have N measurements y_i with Gaussian uncertainties σ_i measured at positions x_i .

Given the straight line model $y_i = mx_i + b$, what are the best estimators of the parameters *m* and *b*?

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Minimize the χ^2

Letting $F_i = mx_i + b$ and $D_i = y_i$, the χ^2 is

$$\chi^{2} = \sum_{i=1}^{N} \frac{(mx_{i} + b - y_{i})2}{\sigma_{i}^{2}}$$

Minimizing χ^2 as a function of the parameters gives

$$\frac{\partial \chi^2}{\partial m} = \sum_{i=1}^N \frac{2(mx_i + b - y_i)x_i}{\sigma_i^2} \quad \text{and} \quad \frac{\partial \chi^2}{\partial b} = \sum_{i=1}^N \frac{2(mx_i + b - y_i)}{\sigma_i^2}$$

Rewritten as a matrix equation, this becomes

$$\nabla \chi^2 = \begin{pmatrix} A & C \\ C & B \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} - \begin{pmatrix} p \\ q \end{pmatrix} = 0$$
$$A = \sum x_i^2 w_i, \ B = \sum w_i, \ C = \sum x_i w_i, \ p = \sum x_i y_i w_i, \ q = \sum y_i w_i$$

31 / 34

Best Estimators of a Linear Function

Inverting the matrix, we find that

$$\hat{m} = rac{Bp-Cq}{AB-C^2}$$
 and $\hat{b} = rac{Aq-Cp}{AB-C^2}$

• The covariance matrix is found by evaluating $[2\nabla \nabla \chi^2]^{-1}$:

$$\begin{pmatrix} \sigma_m^2 & \sigma_{mb} \\ \sigma_{mb} & \sigma_b^2 \end{pmatrix} = 2 \begin{pmatrix} A & C \\ C & B \end{pmatrix}^{-1} = \frac{2}{AB - C^2} \begin{pmatrix} B & -C \\ -C & A \end{pmatrix}$$

- ► We note that even though the data {y_i} are independent, the parameters m̂ and b̂ end up anticorrelated due to the off-diagonal terms in the covariance matrix
- This makes a lot of sense, actually; wiggling the slope of the line m clearly changes the y-intercept b

Summary

- Various algorithms available (simplex, Newton, etc.) with trade offs between speed and accuracy
- All algorithms are sensitive, to some degree or another, to the starting position of the minimization
- Maximum likelihood: same as maximizing a posterior PDF when the priors on the parameters are uniform
- Maximizing the likelihood is the same as minimizing χ^2 in the case where the uncertainties on the data are Gaussian
- In case of Gaussian uncertainties, there is asymptotic convergence of the maximum likelihood to the χ² distribution:

$$\chi^2 = -2\ln L \sim \chi^2_{N-m}$$

(本間) (本臣) (本臣) (臣)

References I

- W. Press et al. Numerical Recipes in C. New York: Cambridge University Press, 1992. URL: http://www.nr.com.
- [2] J.A. Nelder and R. Mead. "A Simplex Method for Function Minimization". In: Comp. J. 7 (1965), pp. 308–313.
- [3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated Annealing". In: Science 220.4598 (1983), pp. 671–680.
- [4] N. Metropolis et al. "Equation of State Calculations by Fast Computing Machines". In: J. Chem. Phys. 21 (1953), p. 1087.

> < 3 > < 3 >