Physics 403
Propagation of Uncertainties

Segev BenZvi
Department of Physics and Astronomy
University of Rochester
<table>
<thead>
<tr>
<th>1</th>
<th>Maximum Likelihood and Minimum Least Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncertainty Intervals from $\Delta \ln L$</td>
</tr>
<tr>
<td></td>
<td>Marginal and Joint Confidence Regions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Propagation of Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error Propagation Formula</td>
</tr>
<tr>
<td></td>
<td>Using the Covariance</td>
</tr>
<tr>
<td></td>
<td>Breakdown of Error Propagation</td>
</tr>
<tr>
<td></td>
<td>Averaging Correlated Measurements with Least Squares</td>
</tr>
<tr>
<td></td>
<td>Asymmetric Error Bars</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Bayesian Approach: Using the Complete PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transformation of Variables</td>
</tr>
<tr>
<td></td>
<td>Breakdown of the Error Propagation Formula</td>
</tr>
</tbody>
</table>
Maximum Likelihood and Method of Least Squares

- Suppose we measure data \(x \) and we want to find the posterior of the model parameters \(\theta \). If our priors on the parameters are uniform then

\[
p(\theta|x, I) \propto p(x|\theta, I) \, p(\theta|I) = p(x|\theta, I) = \mathcal{L}(x|\theta)
\]

- In this case finding the best estimate \(\hat{\theta} \) is equivalent to maximizing the likelihood \(\mathcal{L} \)

- If \(\{x_i\} \) are independent measurements with Gaussian errors then

\[
p(x|\theta, I) = \mathcal{L}(x|\theta) = \frac{1}{(2\pi \Sigma)^{N/2}} \exp \left(- \sum_{i=1}^{N} \frac{(f(x_i) - x_i)^2}{2\sigma_i^2} \right)
\]

- Least Squares: equivalent to maximizing \(\ln \mathcal{L} \), except you minimize

\[
\chi^2 = \sum_{i=1}^{N} \frac{(f(x_i) - x_i)^2}{\sigma_i^2}
\]
Obtaining Uncertainty Intervals from $\Delta \ln \mathcal{L}$ and $\Delta \chi^2$

For Gaussian uncertainties we can obtain 1σ, 2σ, and 3σ intervals using the rules:

<table>
<thead>
<tr>
<th>Error</th>
<th>$\Delta \ln \mathcal{L}$</th>
<th>$\Delta \chi^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>2σ</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3σ</td>
<td>4.5</td>
<td>9</td>
</tr>
</tbody>
</table>

Even without Gaussian errors this can work reasonably well. But, a safe alternative is simulation of $\ln \mathcal{L}$ with Monte Carlo.
Marginal and Joint Confidence Regions

The curves $\Delta \chi^2 = 1.00, 2.71, 6.63$ project onto 1D intervals containing 68.3%, 90%, and 99% of normally distributed data.

Note that it’s the intervals, not the ellipses themselves, that contain 68.3%. The ellipse that contains 68% of the 2D space is $\Delta \chi^2 = 2.30$ [1]
Joint Confidence Intervals

If we want multi-dimensional error ellipses that contain 68.3%, 95.4%, and 99.7% of the data, we use these contours in $\Delta \ln \mathcal{L}$:

<table>
<thead>
<tr>
<th>Range</th>
<th>σ</th>
<th>Joint Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1σ</td>
<td>68.3%</td>
<td>0.50</td>
</tr>
<tr>
<td>2σ</td>
<td>95.4%</td>
<td>2.00</td>
</tr>
<tr>
<td>3σ</td>
<td>99.7%</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Or these in $\Delta \chi^2$ [1]:

<table>
<thead>
<tr>
<th>Range</th>
<th>σ</th>
<th>Joint Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1σ</td>
<td>68.3%</td>
<td>1.00</td>
</tr>
<tr>
<td>2σ</td>
<td>95.4%</td>
<td>4.00</td>
</tr>
<tr>
<td>3σ</td>
<td>99.7%</td>
<td>9.00</td>
</tr>
</tbody>
</table>
Table of Contents

1. Maximum Likelihood and Minimum Least Squares
 - Uncertainty Intervals from $\Delta \ln \mathcal{L}$
 - Marginal and Joint Confidence Regions

2. Propagation of Uncertainties
 - Error Propagation Formula
 - Using the Covariance
 - Breakdown of Error Propagation
 - Averaging Correlated Measurements with Least Squares
 - Asymmetric Error Bars

3. Bayesian Approach: Using the Complete PDF
 - Transformation of Variables
 - Breakdown of the Error Propagation Formula
We know that measurements (or fit parameters) x have uncertainties, and these uncertainties need to be propagated when you calculate functions of measured quantities $f(x)$.

From undergraduate lab courses you know the formula [2]

$$\sigma_f^2 \approx \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_{x_i}^2$$

Question: what does this formula assume about the uncertainties on $x = (x_1, x_2, \ldots, x_N)$?

Question: what does this formula assume about the PDFs of the $\{x_i\}$ (if anything)?

Question: what does this formula assume about f?
Propagation of Uncertainties

- Let's start with a set of \(N \) random variables \(x \). E.g., the \(\{x_i\} \) could be parameters from a fit.

- We want to calculate a function \(f(x) \), but suppose we don't know the PDFs of the \(\{x_i\} \), just best estimates of their means \(\hat{x} \) and the covariance matrix \(V \).

- Linearize the problem: expand \(f(x) \) to first order about the means of the \(x_i \):

\[
f(x) \approx f(\hat{x}) + \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \bigg|_{x=\hat{x}} (x_i - \hat{x}_i)
\]

- The name of the game: calculate the expectation and variance of \(f(x) \) to derive the error propagation formula. To first order,

\[
E[f(x)] \approx f(\hat{x})
\]
Error Propagation Formula

- Get the variance by calculating the expectation of f^2:

$$
E[f^2(x)] \approx f^2(\hat{x}) + 2f(\hat{x}) \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \bigg|_{x=\hat{x}} E(x_i - \hat{x}_i)
$$

$$
+ E \left[\left(\sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \bigg|_{x=\hat{x}} (x_i - \hat{x}_i) \right) \left(\sum_{j=1}^{N} \frac{\partial f}{\partial x_j} \bigg|_{x=\hat{x}} (x_j - \hat{x}_j) \right) \right]
$$

$$
= f^2(\hat{x}) + \sum_{i,j=1}^{N} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \bigg|_{x=\hat{x}} V_{ij}
$$

- Since $\text{var}(f) = \sigma_f^2 = E(f^2) - E(f)^2$, we find that

$$
\sigma_f^2 \approx \sum_{i,j=1}^{N} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \bigg|_{x=\hat{x}} V_{ij}
$$
Error Propagation Formula

For a set of \(m \) functions \(f_1(x), \ldots, f_m(x) \), we have a covariance matrix

\[
\text{cov} (f_k, f_l) = U_{kl} \approx \sum_{i,j=1}^{N} \left. \frac{\partial f_k}{\partial x_i} \frac{\partial f_l}{\partial x_j} \right|_{x=\hat{x}} V_{ij}
\]

Writing the matrix of derivatives as \(A_{ij} = \frac{\partial f_i}{\partial x_j} \), the covariance matrix can be written

\[
U = AVA^\top
\]

For uncorrelated \(x_i \), \(V \) is diagonal and so

\[
\sigma_f^2 \approx \sum_{i=1}^{N} \left. \frac{\partial f}{\partial x_i} \right|_{x=\hat{x}} \sigma_i^2
\]

This is the form you’re used to from elementary courses.
Let $\mathbf{x} = (x, y)$. The general form of σ_f^2 is

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x} \right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y} \right)^2 \sigma_y^2 + 2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \rho \sigma_x \sigma_y$$

The final cross term is ignored altogether in lab courses, but it’s important! Since the correlation between x and y can be negative, you can overestimate the uncertainty in f by failing to include it.

Don’t forget the assumptions underlying this expression:
1. Gaussian uncertainties with known covariance matrix
2. f is approximately linear in the range $(x \pm \sigma_x, y \pm \sigma_y)$

If the assumptions are violated, the error propagation formula breaks down.
Interpolation of Linear Fit

Example

Example LS fit: best estimators $\hat{m} = 2.66 \pm 0.10$, $\hat{b} = 2.05 \pm 0.51$, $\text{cov}(m, b) = -0.10 \implies \rho = -0.94$

$y(5.5) = 16.68 \pm 0.75$ without using the correlation. With the correlation, $y(5.5) = 16.68 \pm 0.19$.
Breakdown of Error Propagation

Example

Imagine two independent variables x and y with $\hat{x} = 10 \pm 1$ and $\hat{y} = 10 \pm 1$. The variance in the ratio $f = x^2 / y$ is

$$
\sigma_f^2 = \left[4 \left(\frac{x}{y} \right)^2 \sigma_x^2 + \left(\frac{x}{y} \right)^4 \sigma_y^2 \right]_{x=\hat{x}}
$$

For $\hat{x} = \hat{y} = 10$ and $\sigma_x^2 = \sigma_y^2 = 1$,

$$
\sigma_f^2 = 4 \left(\frac{10}{10} \right)^2 (1)^2 + \left(\frac{10}{10} \right)^4 (1)^2 = 5
$$

But, suppose $\hat{y} = 1$. Then the uncertainty blows up

$$
\sigma_f^2 = 4 \left(\frac{10}{1} \right)^2 (1)^2 + \left(\frac{10}{1} \right)^4 (1)^2 = 10400
$$
Breakdown of Error Propagation

- What happened? If $\hat{y} = 1$, then y can be very close to zero when $f(x, y)$ is expanded about the mean, so f can blow up and become non-linear.

- **Note**: be careful even when the error propagation assumptions of small uncertainties and linearity apply; the resulting distribution could still be non-Gaussian. Example: x/y, with $\hat{x} = 5 \pm 1$ and $\hat{y} = 1 \pm 0.5$:

- In this case, reporting a central value and RMS for $f = x/y$ is clearly inadequate.
Case Study: Polarization Asymmetry

Example

- Early evidence supporting the Standard Model of particle physics came from observing the difference in cross sections σ_R and σ_L for inelastic scattering of right- and left-handed polarized electrons on a deuterium target [3].
- The experiment studied the polarization asymmetry defined by
 \[
 \alpha = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}
 \]
- Must be careful about using the error on α to conclude whether or not α is consistent with zero.
- More robust approach: check whether or not $\sigma_R - \sigma_L$ alone is consistent with zero.
Averaging Correlated Measurements using Least Squares

Imagine we have a set of measurements $x_i \pm \sigma_i$ of some “true value” \(\lambda \). Since \(\lambda \) is the same for all measurements, we can minimize

\[
\chi^2 = \sum_{i=1}^{N} \frac{(x_i - \lambda)^2}{\sigma_i^2}
\]

The LS estimator for \(\lambda \) is the weighted average

\[
\hat{\lambda} = \frac{\sum_{i} y_i / \sigma_i^2}{\sum 1/\sigma_i^2}, \quad \text{var} (\hat{\lambda}) = \frac{1}{\sum 1/\sigma_i^2}
\]

For correlated measurements, we can write

\[
\chi^2 = \sum_{i,j=1}^{N} (x_i - \lambda)(V^{-1})_{ij}(x_j - \lambda)
\]

\[
\therefore \hat{\lambda} = \sum_{i=1}^{N} w_i x_i, \quad w_i = \frac{\sum_{j=1}^{N} (V^{-1})_{ij}}{\sum_{k,l=1}^{N} (V^{-1})_{kl}}, \quad \text{var} (\hat{\lambda}) = \sum_{i,j=1}^{N} w_i V_{ij} w_j
\]
Example: Averaging Correlated Measurements

Example

We measure a length with two rulers made of different materials (and different coefficients of thermal expansion). Both are calibrated to be accurate at $T = T_0$ but otherwise have a temperature dependence

$$y_i = L_i + c_i(T - T_0)$$

We know the c_i and the uncertainties, T, and L_1 and L_2 from the calibration. We want to combine measurements and get \hat{y}. The variances and covariance are

$$\text{var} (y_i) = \sigma_i^2 = \sigma_{L_i}^2 + c_i^2 \sigma_T^2$$

$$\text{cov} (y_1, y_2) = \mathbb{E} (y_1 y_2) - \hat{y}^2 = c_1 c_2 \sigma_T^2$$

Solve for \hat{y} with the weighted mean derived using least squares.
Example: Averaging Correlated Measurements

Example
Plug in the following values: \(T_0 = 25 \), \(T = 23 \pm 2 \), and

<table>
<thead>
<tr>
<th>Ruler</th>
<th>(c_i)</th>
<th>(L_i) ± 0.1</th>
<th>(y_i) ± 0.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>2.0 ± 0.1</td>
<td>1.80 ± 0.22</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>2.3 ± 0.1</td>
<td>1.90 ± 0.41</td>
</tr>
</tbody>
</table>

Solving, we find the weighted average is

\[
\hat{y} = 1.75 \pm 0.19
\]

So the effect of the correlation is that the weighted average is less than either of the two individual measurements.
Does that make sense?
Averaging Correlated Measurements

- Horizontal bands: lengths L_i from two rulers
- Slanted: lengths y_i corrected for T
- If L_1 and L_2 are known accurately, but y_1 and y_2 differ, then the true temperature must be different than the measured value of T
- The χ^2 favors reducing \hat{y} until $y_1(T)$ and $y_2(T)$ intersect
- If the correction $\Delta T \gg \sigma_T$, some assumption is probably wrong. This would be reflected as a large value of χ^2 and a small p-value
Asymmetric Uncertainties

- You will often encounter published data with asymmetric error bars σ_+ and σ_-, e.g., if the author found an error interval with the maximum likelihood method.

- What do you do if you have no further information about the form of the likelihood, which is almost never published?

- Suggestion due to Barlow [4, 5]: parameterize the likelihood as

$$\ln L = -\frac{1}{2} \frac{(\hat{x} - x)^2}{\sigma(x)^2}$$

where $\sigma(x) = \sigma + \sigma'(x - \hat{x})$. Requiring it to go through the $-1/2$ points gives

$$\ln L = -\frac{1}{2} \left(\frac{(\hat{x} - x)(\sigma_+ + \sigma_-)}{2\sigma_+\sigma_- + (\sigma_+ - \sigma_-)(x - \hat{x})} \right)$$

- When $\sigma_+ = \sigma_-$ this reduces to an expression that gives the usual $\Delta \ln L = 1/2$ rule.
Table of Contents

1 Maximum Likelihood and Minimum Least Squares
 • Uncertainty Intervals from $\Delta \ln \mathcal{L}$
 • Marginal and Joint Confidence Regions

2 Propagation of Uncertainties
 • Error Propagation Formula
 • Using the Covariance
 • Breakdown of Error Propagation
 • Averaging Correlated Measurements with Least Squares
 • Asymmetric Error Bars

3 Bayesian Approach: Using the Complete PDF
 • Transformation of Variables
 • Breakdown of the Error Propagation Formula
Full Bayesian Approach
Transformation of Variables

- In the Bayesian universe, you would ideally know the complete PDF and use that to propagate uncertainties.
- In this case, if we have some \(p(x|I) \) and we define \(y = f(x) \), then we need to map \(p(x|I) \) to \(p(y|I) \).
- Consider a small interval \(\delta x \) around \(x' \) such that

\[
p(x' + \delta x/2 \leq x < \delta x/2|I) \approx p(x = x'|I) \delta x
\]

- \(y = f(x) \) maps \(x' \) to \(y' = f(x') \) and \(\delta x \) to \(\delta y \). The range of \(y \) values in \(y' \pm \delta y/2 \) is equivalent to a variation in \(x \) between \(x' \pm \delta x/2 \), and so

\[
p(x = x'|I) \delta x = p(y = y'|I) \delta y
\]

In the limit \(\delta x \to 0 \), this yields the PDF transformation rule

\[
p(x|I) = p(y|I) \left| \frac{dy}{dx} \right|
\]
Transformation of Variables
More than One Variable

- For more than one variable,

\[p(\{x_i\}| I) \, \delta x_1 \ldots \delta x_m = p(\{y_i\}| I) \, \delta^m \text{vol}(\{y_i\}) \]

where \(\delta^m \text{vol}(\{y_i\}) \) is an \(m \)-dimensional volume in \(y \) mapped out by the hypercube \(\delta x_1 \ldots \delta x_m \)

- The \(m \)-dimensional equivalent of the 1D transformation rule is

\[p(\{x_i\}| I) = p(\{y_i\}| I) \left| \frac{\partial(y_1, \ldots, y_m)}{\partial(x_1, \ldots, x_m)} \right| \]

where the rightmost expression is the Jacobian matrix of partial derivatives \(dy_i/dx_j \)
Polar Coordinates

Example

For \(x = R \cos \theta \) and \(y = R \sin \theta \),

\[
\left| \frac{\partial (x, y)}{\partial (R, \theta)} \right| = \begin{vmatrix} \cos \theta & -R \sin \theta \\ \sin \theta & R \cos \theta \end{vmatrix} = R(\cos^2 \theta + \sin^2 \theta) = R
\]

Therefore, \(p(R, \theta | I) \) is related to \(p(x, y | I) \) by

\[
p(R, \theta | I) = p(x, y | I) \cdot R
\]

You saw this earlier in the semester with the Rayleigh distribution:

\[
p(x, y | I) = \frac{1}{2\pi \sigma^2} \exp \left\{ -\frac{x^2 + y^2}{2\sigma^2} \right\} \implies p(R, \theta | I) = \frac{R}{2\pi \sigma^2} \exp \left\{ -\frac{R^2}{2\sigma^2} \right\}
\]

We have just equated the volume elements \(dx \, dy = R \, dR \, d\theta \).
Application to Simple Problems

- If we want to estimate a sum like \(z = x + y \) or a ratio \(z = x/y \), we integrate the joint PDF \(p(x, y|I) \) along the shaded strips defined by \(\delta(z - f(x, y)) \):

- The explicit marginalization is

\[
p(z|I) = \iiint dx \, dy \, p(z|x, y, I) \, p(x, y|I)
\]

\[
= \iiint dx \, dy \, \delta(z - f(x, y)) \, p(x, y|I)
\]
Sum of Two Random Variables

- The sum \(z = x + y \) requires that we marginalize

\[
p(z|I) = \int \int dx\ dy\ \delta(z - (x + y))\ p(x, y|I)
\]

- If we are given \(x = \hat{x} \pm \sigma_x \) and \(y = \hat{y} \pm \sigma_y \), then we can assume \(x \) and \(y \) are independent and factor the joint PDF into separate PDFs by the product rule:

\[
p(z|I) = \int dx\ p(x|I) \int dy\ p(y|I)\ \delta(z - x - y)
\]

\[
= \int dx\ p(x|I)\ p(y = z - x|I)
\]

- Assuming Gaussian PDFs for \(x \) and \(y \),

\[
p(z|I) = \frac{1}{2\pi\sigma_x\sigma_y} \int dx\ \exp \left\{ - \frac{(x - \hat{x})^2}{2\sigma_x^2} \right\} \ \exp \left\{ - \frac{(z - x - \hat{y})^2}{2\sigma_y^2} \right\}
\]
Sum of Two Random Variables

After some rearranging of terms and changes of variables, we can express

$$p(z|l) = \frac{1}{2\pi \sigma_x \sigma_y} \int dx \exp \left\{ -\frac{(x - \hat{x})^2}{2\sigma_x^2} \right\} \exp \left\{ -\frac{(z - x - \hat{y})^2}{2\sigma_y^2} \right\}$$

as

$$p(z|l) = \frac{1}{\sqrt{2\pi} \sigma_z} \exp \left\{ -\frac{(z - \hat{z})^2}{2\sigma_z^2} \right\}$$

where

$$\hat{z} = \hat{x} + \hat{y} \quad \text{and} \quad \sigma_z^2 = \sigma_x^2 + \sigma_y^2$$

Hence, we see how the quadrature sum rule for adding uncertainties derives directly from the assumption of Gaussian errors. Note that for a difference $z = x - y$, the uncertainties still add in quadrature but $\hat{z} = \hat{x} - \hat{y}$, as you'd expect.
Isn’t this serious overkill given that we have the error propagation formula? Unfortunately, recall that the formula can break down.

Example

- In crystallography, one measures a Bragg peak \(A = \hat{A} \pm \sigma_A \)
- The peak is related to the structure factor \(A = |F|^2 \)
- We want to estimate \(f = |F| = \sqrt{A} \). From the propagation formula,

\[
f = \sqrt{\hat{A}} \pm \frac{\sigma_A}{2\sqrt{\hat{A}}}
\]

- Problem: suppose \(\hat{A} < 0 \), which is an allowed measurement due to reflections
- Now we’re in trouble, because the error propagation formula requires us to take the square root of a negative number.
Solution with Full PDF

Let’s write down the full posterior PDF

\[p(A|\{\text{data}\}, I) \propto p(\{\text{data}\}|A, I) \ p(A|I) \]

By applying the error propagation formula, we assumed \(A \) is distributed like a Gaussian, so

\[p(\{\text{data}\}|A, I) \propto \exp \left\{ -\frac{(A - \hat{A})^2}{2\sigma_A^2} \right\} \]

Since \(A < 0 \) is a problem, let’s define the prior to force \(A \) into a physical region:

\[p(A|I) = \begin{cases} \text{constant} & A \geq 0 \\ 0 & \text{otherwise} \end{cases} \]

When \(\hat{A} < 0 \), the prior will truncate the Gaussian likelihood
Solution with Full PDF

- Truncating the PDF violates the error propagation formula, because it depends on a Taylor expansion about a central maximum.
- There is no such restriction on the formal change of variables to f:

$$p(f|\{\text{data}\}, I) = p(A|\{\text{data}\}, I) \cdot \left| \frac{dA}{df} \right|$$

- The Jacobian is $|dA/df| = 2f$, with $f = |F| \geq 0$, so

$$p(f|\{\text{data}\}, I) \propto f \cdot \exp \left\{ -\frac{(A - \hat{A})^2}{2\sigma^2_A} \right\} \quad \text{for } f \geq 0$$

- Find \hat{f} by maximizing $\ln p$, and σ^2_f from $\sigma^2_f = (-\partial^2 \ln p/\partial f^2)^{-1}$:

$$2\hat{f}^2 = \hat{A} + \sqrt{\hat{A}^2 + 2\sigma^2_A}, \quad \sigma^2_f = \left[\frac{1}{\hat{f}^2} + \frac{2(3\hat{f}^2 - \hat{A})}{\sigma^2_A} \right]^{-1}$$
Asymptotic Agreement of PDF and Error Propagation

- When $\hat{A} > 0$ and $\hat{A} \gg \sigma_A$, the expressions for f and σ_f^2 are

$$2\hat{f}^2 = \hat{A} + \sqrt{\hat{A}^2 + 2\sigma_A^2} \rightarrow \hat{f} = \sqrt{\hat{A}}$$

$$\sigma_f^2 = \left[\frac{1}{\hat{f}^2} + \frac{2(3\hat{f}^2 - \hat{A})}{\sigma_A^2} \right]^{-1} \rightarrow \frac{\sigma_A^2}{4\hat{A}}$$

- For example, if $A = 9 \pm 1$, the posterior PDFs of A and f look very similar to the Gaussian PDF implied by the error propagation formula:

![PNG of two Gaussian PDFs]
Asymptotic Agreement of PDF and Error Propagation

- If $A = 1 \pm 9$, the error propagation formula (dashed) begins to blow up compared to the full PDF:

- If $A = -20 \pm 9$, the error propagation formula can't even be applied. The posterior PDF looks like a Rayleigh distribution:
The standard error propagation formula applies when uncertainties are Gaussian and $f(x)$ can be approximated by a first-order Taylor expansion (linearized).

Most undergraduate courses emphasize only uncorrelated uncertainties, but you need to account for correlations.

Often authors will report asymmetric error bars, implying non-Gaussian uncertainties, without giving the form of the PDF. In this case there are some approximations to the likelihood that you can try to use.

Standard error propagation breaks down when the errors are asymmetric or $f(x)$ can’t be linearized.

The general case is to use the full PDF to construct a new uncertainty interval on your best estimator. It’s a pain (and often overkill) but it is always correct and can help you when standard error propagation fails.
References I

