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Parameter Intervals

I We often want to make a statement about some parameter µ whose
true value µt (in the frequentist sense) is unknown.

I We measure an observable x whose PDF depends on µ. I.e., we have
p(x |µ) = L (x |µ)

I From Bayes’ Theorem, we want to calculate

p(µt |x) =
L (x |µt) p(µt)

p(x)

I A Bayesian interval [µ1, µ2] corresponding to a confidence level α is
constructed by requiring∫ µ2

µ1

p(µt |x) dµt = α

This is called the credible interval of µt

Segev BenZvi (UR) PHY 403 3 / 30



Bayesian Credible Intervals
Central Interval

Given the posterior PDF, it is easy to quote a range for a paramter:

Central 90% of the PDF gives a credible region x ∈ [4.0, 18.4].
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Bayesian Credible Intervals
Upper Limit

If you wanted to quote an upper limit instead you would just integrate to
find the 90th percentile:

Here x ∈ [0, 16.0], or, “the upper limit of x at 90% C.L. is 16.0”
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Advantages and Disadvantages of the Bayesian Approach

I With the Bayesian approach you can account for prior knowledge
when calculating the credible region, which can be very useful for
quoting limits near a physical boundary

I Example from Cowan [1]: you measure m2 = E 2 − p2. Because of
measurement uncertainties the maximum likelihood estimator m̂2 < 0

I A Bayesian would be able to use a prior that vanishes for m < 0, so
you don’t have to publish an unphysical value. This option is not
available to a frequentist

I However, a 90% Bayesian credible interval may not mean that 90%
you will measure a value in a certain range, because the PDF does not
have to refer to long-run frequencies

I The frequentist range (confidence interval) is sometimes what you
want, but interpreting it is tricky
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Classical Confidence Intervals

I Since frequentists do not work with posterior PDFs, classical intervals
are not statements about µt given an observable x

I For a frequentist, the range [µ1, µ2], called the confidence interval,
is a member of a set such that

p(µ ∈ [µ1, µ2]) = α

I The values µ1 and µ2 are functions of x , and refer to the varying
intervals from an ensemble of experiments with fixed µ

I Frequentist: [µ1, µ2] contains the fixed, unknown µt in a fraction α of
hypothetical experiments

I Bayesian: the degree of belief that µt is in [µ1, µ2] is α
I These views can correspond, but they don’t have to
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Constructing a Neyman-Pearson Interval

To construct a confidence interval, we begin with p(x |µ), the PDF of the
observable given a fixed value of the parameter µ:

The observable x has probability 1− α− β to fall in the unshaded region.
We define a central confidence interval by setting α = β
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Constructing a Confidence Belt

I Since µ varies, we now repeat
this procedure for different
values of µ

I Construct a confidence belt by
calculating x1 and x2 such that

p(x < x1|µ) = p(x > x2|µ)
= (1− α)/2

for each value of µ
I If we observe x0, the confidence

interval [µ1, µ2] is the union of
all values of µ defined by the
vertical slice through the belt
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Central and Upper Intervals

To construct an upper interval, calculate p(x < x1|µ) = 1− α for all µ.

Left: confidence belt for 90% C.L. central intervals for the mean of a
Gaussian with a boundary at 0. Right: confidence belt for 90% C.L. upper
limits for the mean µ (from [2])
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Using an Upper Limit

This plot was constructed using the PDF

p(x |µ) = 1√
2π

exp
[
−(x − µ)2

2

]
.

Only positive values of µ are physically
allowed, so the plot cuts off at µ < 0.

This is perfectly valid, but what happens
when the measurement is x = −1.8?

Draw a vertical line at x = −1.8; the
confidence interval is an empty set. How
can we interpret this?
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Interpreting the Confidence Interval

I Problem: we set up the problem to ignore µ in the non-physical
region µ < 0, but observed x = −1.8 and found that [µ1, µ2] = ∅

I Temptation: we might want to conclude that all values of µ are ruled
out by the measurement. Is this correct?

I Nope! Remember what the 90% confidence interval tells you: given
an ensemble of identical experiments, you should expect to construct
an interval that contains the true value of µ 90% of the time

I If [µ1, µ2] = ∅ then conclude that you have conducted one of the 10%
of experiments that fail to contain the true value

I It’s a common mistake to conclude that the confidence interval tells
you about the true value µt . It doesn’t. A frequentist test won’t tell
you about µt , just the long-run outcome of many identical experiments
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Frequentist Coverage

I If p(µ ∈ [µ1, µ2]) = α is satisfied, one says that the intervals cover µ
at the stated confidence (or equivalently, that the intervals have the
correct “coverage”)

I Undercoverage: there exists a µ such that p(µ ∈ [µ1, µ2]) < α

I Overcoverage: there exists a µ such that p(µ ∈ [µ1, µ2]) > α

I Undercoverage is a serious problem because it can lead to a Type I
error, i.e., failure to accept a true null hypothesis (false discovery)

I If a set of intervals overcovers for some values of µ but never
undercovers it is called “conservative”

I Conservative intervals are not considered as big of a problem, but they
result in Type II errors, i.e., failure to reject a false null hypothesis
(loss of power)
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Poisson Process with Background
Built-in Overcoverage

Suppose you are counting discrete events x → n where n consists of signal
events with unknown mean µ and background events with known mean b:

p(n|µ) = (µ+ b)n exp [−(µ+ b)]/n!
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Poisson Process with Background
Built-in Overcoverage

I Because in the Poisson process n is an integer, we will sometimes find
that

p(µ ∈ [µ1, µ2]) 6= α

simply because the discrete intervals cannot cover µ
I Convention: for the Poisson process, instead choose to satisfy

p(µ ∈ [µ1, µ2]) ≥ α

in all edge cases. I.e., systematically overcover when necessary
I This is pretty sub-par. We want a 90% interval to fail to contain the

true value 10% of the time. Overcoverage means this happens less
than that

I Unfortunately, the overcoverage in the Poisson case is not done by
choice. It’s a consequence of the discreteness of the counts
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Other Limits on Producing Confidence Intervals

I There is a serious limitation with classical confidence intervals: for
coverage to be meaningful, you must decide ahead of time what kind
of interval to calculate

I If it is determined before conducting an experiment that an upper limit
is appropriate, then the triangular confidence belt shown earlier is
perfectly fine

I If it is determined before conducting an experiment that a central limit
is appropriate, then the central confidence belt shown earlier is
perfectly fine

I But, if the experimenter decides to publish an upper or central interval
based on the results of the experiment – a completely reasonable thing
to do, by the way – then things go bad very quickly

Segev BenZvi (UR) PHY 403 17 / 30



Flip Flopping

Suppose a physicist measures a
quantity x and decides to publish
results about µ as follows:

I If x < 0, publish an upper limit
on µ to be “conservative” (red)

I If the measurement of x is
< 3σ, calculate an upper limit
on µ (blue)

I If the measurement of x is
≥ 3σ, calculate a central
confidence interval (gray)

I We say the physicist “flip-flops”
between publishing central
intervals and upper limits
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The Problem with Flip Flopping

I Flip-flopping shows up as kinks
in the confidence belt. It’s a
problem because µ is
undercovered if x < 3σ

I For µ = 2, the interval
[x1 = 2− 1.28, x2 = 2+ 1.64]
contains only 85% of the
probability defined by

p(x |µ) = 1√
2π

exp
[
−(x − µ)2

2

]
I Hence, most of the intervals on

this plot don’t cover µ and are
not conservative
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Alternative Methods of Constructing a Confidence Interval

There is quite a bit of freedom in how you can construct a confidence
interval, so there are several approaches for how to draw the 90% interval
over x for a fixed µ:

I Upper or lower limits: add all x greater than or less than a given value
I Central intervals: draw a central region with equal probability of x

falling above or below the region
I Ranking: starting from x which maximizes p(x |µ), keep adding values

of x , ranked by p(x |µ), until the interval contains 90% of the
probability

This last ordering scheme is closely related to the so-called
Feldman-Cousins method, which can be used to get around the
flip-flopping problem [2]

Segev BenZvi (UR) PHY 403 21 / 30



The Feldman-Cousins Method

I For each x , let µ̂ be the physically allowed value of the mean µ which
maximizes p(x |µ). I.e., µ̂ is the MLE

I Then calculate the likelihood ratio

R =
p(x |µ)
p(x |µ̂)

I For µ fixed, add values of x to the interval from higher to lower R
until the desired probability content is realized, e.g., 90%

I Gaussian example: µ̂ = x if x ≥ 0 and 0 if x < 0. So

R =
p(x |µ)
p(x |µ̂)

=

exp
[
− (x−µ)2

2

]/
1 x ≥ 0

exp
[
− (x−µ)2

2

]/
exp
[
− x2

2

]
x < 0
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A Feldman-Cousins Interval

I Left: Feldman-Cousins
confidence interval for a
Gaussian µ with a boundary at 0

I The ratio ensures that the
confidence interval is never an
empty set

I There are no more kinks in the
confidence belt; it transitions
smoothly between upper limits
and central intervals given a
measurement x

I Procudure: take data and
calculate the FC interval. If x is
small, then the method
automatically returns µ1 = 0
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Using Feldman-Cousins Intervals in Practice

Common application: quote a limit on the size of a signal given a known
background:

p(µ|b, n0) = (µ+ b)n0 exp [−(µ+ b)]/n0!

The lookup table for 90% C.L. is reprinted from the Feldman-Cousins
paper [2]. For b = 4, we have to observe at least n0 = 8 events before
µ1 6= 0. We’d then say that we exclude µ = 0 at the 90% C.L.
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Remaining Conceptual Problems

Problems remain with the interpretation of data when the number of
events are fewer than the expected background

Example
Experiment 1: b = 0, n0 = 0 =⇒ µ ∈ [0.00, 2.44] at 90% C.L.
Experiment 2: b = 15, n0 = 0 =⇒ µ ∈ [0.00, 0.92] at 90% C.L.

What’s going on here? Experiment 1 worked hard to remove their
background. Experiment 2 did not and expected a much higher
background.

Neither experiment observed any events, but Experiment 2, by common
sense the “worse” of the two experiments, has a smaller Feldman-Cousins
confidence interval than Experiment 1. Seems pretty unfair, no?
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Don’t Confuse Intervals with Posterior Probabilities

I The origin of the paradox is that it’s easy to think of the smaller
confidence interval as a tighter constraint on µt

I But that is thinking about the interval as if it is equivalent to

p(µt |x0) = posterior probability of µt

I Remember, we are calculating p(x0|µ). I.e., µ is fixed. If we need to
make an inference about µt , we should be using a Bayesian framework
(according to Feldman and Cousins themselves [2])

I So why even bother constructing a frequentist interval? Perhaps the
question answers itself...

I If you’re interested in the long-run behavior of many identical
experiments, frequentist intervals are useful. But it’s really easy to
make basic conceptual mistakes when using them
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Reporting Sensitivity
If n0 < b, report the “sensitivity,” the average upper limit obtained with an
ensemble of background-only experiments, as well as calculated limits [2]
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Reporting Sensitivity

Back to the example:

Example
Experiment 1: b = 0, n0 = 0 =⇒ µ ∈ [0.00, 2.44] at 90% C.L. The
sensitivity is 2.44 at 90% C.L.

Experiment 2: b = 15, n0 = 0 =⇒ µ ∈ [0.00, 0.92] at 90% C.L. The
sensitivity is 4.83 at 90% C.L.

The upper limit from Experiment 2 (0.92) is much smaller than its
sensitivity (4.83), implying that the experiment benefitted from a huge and
rather unlikely downward fluctuation in n0.

Fluctuations happen, even into non-physical regions (remember the m2

example). Frequentists have to publish these fluctuations no matter what
since the results from many experiments is of interest. Failure to do so will
bias meta-analyses of the literature
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Summary

Constructing a frequentist confidence interval means that you identify some
confidence level α and then build a set [µ1, µ2] that has probability α of
containing µt . Unfortunately:

I Sometimes the confidence interval is an empty set
I Intervals have kinks if you flip-flop between upper limits and central

measurements
I You can’t simply cut data in unphysical regions

If your data imply an unphysical result, too bad; you ran one of the 1− α
fraction of experiments with an interval that doesn’t contain µt .

The Feldman-Cousins method exploits the fact that you can construct a
Neyman interval in several ways. Ranking x by its likelihood ratio allows
you to fix some of the pathologies in interval construction
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