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Searching for Structure in a Time Series
Suppose we measure some quantity as a function of time, like the flux of
particles in a detector, and we want to estimate f assuming it obeys

y(t) = A cos (2πft + ϕ) + Gaussian noise (mean= 0, σ = 1)

This falls under the domain of spectral analysis
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Analysis in the Frequency Domain

I There are many ways one can try to analyze the data in the time
domain using maximum likelihood and Bayesian techniques

I Today, we’ll talk about solutions in the frequency domain
I This means we need to review the basics of Fourier analysis, because

the study of signals in the frequency domain is done using the Fourier
transform of the data

I But first, we have to also review some basic concepts from the
processing of digital (i.e., sampled) signals:

1. Analog to digital conversion
2. Nyquist sampling theorem
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Signal Sampling (Digitization)

Sampling is the compression of a continuous (analog) signal S(t) into a
discrete (digital) signal Si .

If the signal is sampled at intervals of width T , we say the sampling rate is
fs = 1/T .
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Example: Analog to Digital Conversion
Example of a digitized waveform produced when a single photon triggers a
digital optical module, or DOM, in the IceCube detector [1]:

Segev BenZvi (UR) PHY 403 6 / 34



Nyquist-Shannon Sampling Theorem
If a signal’s highest frequency f < fs/2, where fs is the sampling rate, the
signal can be reconstructed perfectly [2, 3].

If f ≥ fs/2 the signal can exhibit aliasing, in which several different
functions can be reconstructed from the same set of samples. The peak
frequency that can be reconstructed is called the Nyquist frequency:

fNyquist = fs/2 = 1/2T
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Harmonic Analysis
I Fourier’s theorem: a periodic function h(t) can be expanded in terms

of an infinite sum of sines and cosines, which form an orthogonal basis
on t ∈ [−τ/2, τ/2]. Defining f0 = 1/τ , we have

h(t) =
a0

2
+
∞∑
n=1

an cos (2πnf0t) +
∞∑
n=1

bn sin (2πnf0t)

I The terms an and bn are called the Fourier coefficients of h(t) and can
be picked out by calculating the inner product of h(t) with the basis
functions:

a0 =
2
τ

∫ τ/2

−τ/2
h(t) dt

an =
2
τ

∫ τ/2

−τ/2
h(t) cos (2πnf0t) dt

bn =
2
τ

∫ τ/2

−τ/2
h(t) sin (2πnf0t) dt
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Fourier’s Theorem

Red: a periodic function (square wave) approximated by the first six terms
in the Fourier series

The series of lines on the right indicate the power spectral density (PSD)
of the function. We will spend the next few slides explaining what the PSD
is and how to interpret it
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Fourier Transform
I For more convenient notation, if we allow the Fourier coefficients to

be complex-valued we can write the much simpler expression

h(t) =
∞∑

n=−∞
Hn e i2πnf0t

where

Hn =
1
τ

∫ τ/2

−τ/2
h(t) e−i2πnf0t dt

I In the limit as τ →∞, the separation between Fourier components
f0 = 1/τ → 0 and the Hn become a continous function H(f ) known
as the Fourier transform (FT):

H(f ) =

∫ ∞
−∞

h(t) e−i2πft dt

The FT decomposes h(t) into the frequencies that contribute to it
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Time-Frequency Relationship

I When h(t) is more concentrated,
H(f ) becomes spread out, and
vice-versa

I Gabor limit: uncertainty relation in
time and frequency analysis. Follows
because t and f are Fourier pairs

I For a measure of bandwidth ∆f and
a measure of time duration ∆t
(e.g., variances),

∆t∆f ≥ 1

I Proof: use definition of variance
with the Cauchy-Schwartz Inequality
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Discrete Fourier Transform
I Suppose that h(t) is sampled in N intervals lasting T seconds each, so

that the function is given by N equally-spaced samples hk = h(kT ) for
k = 0, 1, . . . ,N − 1

I We calculate H(f ) at the discrete frequencies

fn =
n

NT
, n = −N

2
, . . . ,

N

2
where we obtain useful information only when |f | < fNyquist = 1/(2T )

I The Discrete Fourier Transform (DFT) is

H(f ) =

∫ ∞
−∞

h(t) e−i2πft dt

≈
N−1∑
k=0

h(kT ) e−i2πfnkT T = T
N−1∑
k=0

hk e−i2πnk/N = THn

∴ Hn =
N−1∑
k=0

hk e−i2πnk/N
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Discrete Power Spectral Density
I The power spectrum, or power spectral density (PSD), is the power

per unit cycle of h
I Energy is defined by Parseval’s theorem:

Energy =

∫ ∞
−∞

h2(t) dt =

∫ ∞
−∞
|H(f )|2 df

=
N−1∑
k=0

h2
kT =

N−1∑
n=0

|H(fn)|2∆f

Power is energy/(waveform duration), where duration is NT
I For a sampled waveform, the PSD ∝ (Fourier coefficient)2

P(fn) =


T/N |H0|2, n = 0
T/N

[
|Hn|2 − |HN−n|2

]
, n = 1, 2, . . . , (N/2− 1)

T/N |HN/2|2, fN/2 = Nyquist frequency
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Periodogram

The PSD is how we typically investigate the number and relative strength
of frequency constributions to a signal:

In f -domain problems we call plots of the PSD periodograms. It is just
proportional to the square modulus of the (discrete) Fourier transform
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Periodogram: Two Frequencies

The PSD is how we typically investigate the number and relative strength
of frequency constributions to a signal:

It is just proportional to the square modulus of the (discrete) Fourier
transform
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Example: Power Spectrum of Galaxies

The power spectrum doesn’t just have to involve t and f ; it can be
calculated for any Fourier pair such as position x and wavenumber k

How far away from each galaxy are other galaxies? The power spectrum
tells us. We care because it is sensitive to the ratio of dark matter in the
universe (23%) to normal matter (4%)
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Example: Angular TT Power Spectrum of the CMB
Another Fourier pair: angular separation θ between hot and cold spots in
the CMB and multipole `

Note: the temperature-temperature (TT) power spectrum comes from

TT =
`max∑
`=0

∑̀
m=−`

a`mY`m(θ, ϕ), CTT
` ∝

∑̀
m=−`

|a`m|2
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Bayesian Insight into the Periodogram

I Let’s get back to the example from the start of the presentation:
given a time series with noise, we want to test if the data are
sinusoidal with frequency f , where the model is:

y(t) = A cos (2πft + ϕ)

I Given data D and Gaussian noise of known size σ, we solve

p(f |D, σ, I ) ∝ p(D|f , σ, I ) p(f |I )

=

∫
dA

∫
dϕ p(D|A, f , ϕ, σ, I ) p(A|I ) p(f |I ) p(ϕ|I )

I The uncertainties are Gaussian, so the likelihood is

p(D|A, f , ϕ, σ, I ) =
N∏
i=1

1√
2πσ

exp
[
−1
2

(di − y(ti ))2

σ2

]
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Bayesian Insight into the Periodogram

I Choose a uniform prior for amplitude A and a unifor prior for the
phase ϕ

I Marginalizing the unwanted parameters A and ϕ gives

p(fn|D, σ, I ) ∝ exp
[
C (fn)

σ2

]
,

where C (fn) = |Hn|2/N ∝ PSD and σ2 is the known variance of the
noise [4]

I The Bayesian analysis shows that the DFT is the optimal estimator of
f if N is large, DC offsets have been removed, there are no lower
frequencies, the data contain just one frequency, A and ϕ are
constant, and the noise is Gaussian [4]

I Bonus: the expression naturally attenuates noise features in the base
of the PSD without requiring any kind of smoothing

Segev BenZvi (UR) PHY 403 21 / 34



Periodogram with Low Signal/Noise Ratio
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Periodogram with High Signal/Noise Ratio
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Bayesian Periodogram with Unknown Variance
I Suppose that we actually don’t know the variance of the data. In this

case it also becomes a nuisance parameter that needs to be
marginalized:

p(f |D, I ) =

∫
dA

∫
dϕ

∫
dσ p(D|A, f , ϕ, σ, I )

p(A|I ) p(f |I ) p(σ|I ) p(ϕ|I )

I Since σ is a scale parameter we use p(σ|I ) ∝ 1/σ, giving

p(fn|D, I ) ∝
[
1− 2C (fn)

Nd2

] 2−N
2

,

which looks like a Student t distribution. Note that

d2 =
1
N

N∑
i=0

d2
i

is the mean square average of the data values.
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Periodogram with Unknown Variance in Data
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Nonuniform Sampling

I An extremely common problem in time-domain analysis is nonuniform
sampling caused by downtime

I New approach: fit a new model to the data of the form

y(ti ) = A cos (2πfti − θ)Z (ti ) + B sin (2πfti − θ)Z (ti )

I A and B are the amplitudes of the sine and cosine functions
(equivalent to one amplitue plus phase in a cosine function)

I Z (t) is a weighting function that accounts for missing data or any
other effect of importance

I θ is defined to make the sine and cosine functions orthogonal on
discretely sampled times
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Example: Searching for Periodicities in 8B Solar ν Flux
Looking for periodicity in solar ν flux in SNO detector, D2O and salt mode
[5]. Note the gaps in the data:
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Classical Solution: Lomb-Scargle Periodogram
The classical solution to non-uniform sampling is called a Lomb-Scargle
periodogram:

h2 =
R(f )2

C (f )
+

I (f )2

S(f )

where

R(f ) =
N∑
i=1

d(ti ) cos (2πfti − θ) Z (ti )

I (f ) =
N∑
i=1

d(ti ) sin (2πfti − θ) Z (ti )

C (f ) =
N∑
i=1

cos2 (2πfti − θ) Z (ti )
2

S(f ) =
N∑
i=1

sin2 (2πfti − θ) Z (ti )
2
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Example: 8B Solar ν Flux
SNO Lomb-Scargle periodograms for D2O (top) and salt (bottom) [6]:
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Bayesian Lomb-Scargle Calculation

I Assume independent uniform priors for A and B

I Assume a Jeffreys prior for the noise variance σ. Hence, any variation
not described by the model is assumed to be noise

I Putting it all together:

p(fn|D, I ) ∝
1√

C (fn)S(fn)

[
Nd2 − h2

] 2−N
2

I Like the periodogram with uniform sampling, p(fn|D, I ) involves a
nonlinear processing of the Lomb-Scargle periodogram

I Spurious base features in the periodogram are attenuated
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Bayesian Lomb-Scargle Calculation
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Summary

I For a sampled signal, the (Schuster) periodogram given by the PSD of
the signal is an easy way of picking out the frequency components in a
signal

I The periodogram can be derived from first principles in a Bayesian
analysis by marginalizing the amplitude and phase of a periodic signal

I The Bayesian periodogram goes like p(f |D, I ) ∝ exp [C (fn)/σ2],
resulting in the natural attenuation of ripples below the main peak

I If one carries out a Bayesian analysis on a nonuniformly sampled
signal, a version of the Lomb-Scargle periodogram pops out

I Note: this is not the only way to search for periodicity in an analysis,
but it is probably the most popular
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