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Reading

I Sivia: Chapter 1
I Cowan: Chapter 1.1 – 1.5
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Last Time
Basics of Probabilistic Reasoning

I Degrees of plausibility are
represented by real numbers.

I As data supporting a
hypothesis accumulate, its
plausibility increases
continuously and
monotonically.

I If there are two different ways
to use the same information,
both methods should give the
same conclusion.

I All probability is conditional
on some assumption.
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Basic Rules of Probability

1. Representation: truth: P(A|I) = 1; falsehood: P(A|I) = 0.
2. Sum Rule: P(A|I) + P(A|I) = 1

Example

A = “a coin toss gives tails.” Clearly P(A|I) + P(A|I) = 1.

3. Product Rule: P(A, B|I) = P(A|B, I)× P(B|I)

Example
Two red marbles and one blue marble are in a bag. Two marbles are
drawn from the bag in sequence and without replacement. What is the
probability that both marbles are red?

P(R|I) = 2/3
P(R, R|I) = P(R|I)× P(R|R, I) = 2/3× 1/2 = 1/3
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General Product Rule
“Chain Rule”

The product rule can be extended to more premises. Given A, B, C, and
D, the joint probability that all are true is

P(A, B, C, D|I) = P(D|A, B, C, I) · P(C|A, B, I) · P(B|A, I).

This is sometimes called the chain rule.

Generalizing to n premises, the joint probability can be written

P

(
n⋂

k=1

Ak

∣∣∣∣I
)

=
n

∏
k=1

P


Ak

∣∣∣∣
k−1⋂

j=1

Aj, I



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Further Properties of Probability Functions
Additional important properties of probability functions can be
derived using Boolean algebra and repeated applications of the sum
and product rules. For example:

P(A|I) = 1− P(A|I)
P(A + A|I) = 1

P(A|I) ∈ [0, 1]
P(A + B|I) = P(A|I) + P(B|I)− P(A, B|I)

Furthermore, from the product rule, A and B are called independent if
P(A|B, I) = P(A|I) and P(B|A, I) = P(B|I), so that

P(A, B|I) = P(A|I)× P(B|I).

Example
We draw marbles from our bag but replace them after each draw.
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Bayes’ Theorem

The very important Bayes’ Theorem can also be derived directly from
the product rule:

P(A, B|I) = P(A|B, I)× P(B|I)
P(B, A|I) = P(B|A, I)× P(A|I)

Logically, AB = BA, so P(A, B|I) = P(B, A|I). Therefore

P(A|B, I) =
P(B|A, I)× P(A|I)

P(B|I)

“The probability of A given B and I is equal to the probably of B given
A times the probability of A irrespective of B, divided by the
probability of B irrespective of A.”
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Bayes’ Theorem and Inference

Replace A with hypothesis H and B with data D to see how Bayes’
Theorem applies to model selection and parameter estimation:

I A priori probability of the hypothesis (“prior”)
I “Likelihood” of data given the hypothesis

P(H|D, I) =
P(D|H, I) × P(H|I)

P(D|I)

I Posterior probability
I “Evidence” or “prior predictive” of the data

Using Bayes’ Theorem you can construct a probability for any
hypothesis given an observation.
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The Posterior Probability

The posterior probability P(H|D, I) gives the probability that
hypothesis H is true given the data D and background information I.

Example

You have some data (x, y) that appear to be linear. Your hypothesis H
could be “the data were generated by a function f (x) = ax + b.”
In this case, P(H|D, I) = P(H|(x, y), I) gives the probability that the
data were generated by f (x).

In order to calculate P(H|D, I), you need to quantify:

I The likelihood P(D|H, I), which is usually quite easy.
I The prior P(H|I), which is not always obvious.

Comment: in frequentist statistics priors are not calculated at all. Only
the likelihood is used.
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The Likelihood
“What is the probability of observing D given H?”

Example

Using the example from the last slide, if the measurements y = {yi}
are independent and have Gaussian uncertainties of width σ, we
would write

P(D|H, I) =
N

∏
i=1

p(yi|H, I)

=
N

∏
i=1

1√
2πσ

exp

{
−1

2

(
yi − (axi + b)

σ

)2
}

=

(
1

2πσ2

)N/2

exp

{
−1

2

N

∑
i=1

(
yi − (axi + b)

σ

)2
}

.

Note: the likelihood does NOT give the probability that the data are
linear; we already assumed y = ax + b when constructing P(D|H, I).
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The Prior
When choosing the prior P(H|I) one can use:

I A known relative frequency from previous observations.
I A theoretical input with some given uncertainty.
I A noninformative probability density function that indicates our

total ignorance (meaning of “noninformative” to be defined later).
I A personal opinion.

As a rule, we want a prior that doesn’t overly bias us against new
discoveries in the data. Doing this correctly can be non-trivial.

Example

Using the example from the previous two slides, P(H|I) could be:
I Our prior belief in H that the data are linear;
I Our belief in the likely values of the model parameters a and b,

with I corresponding to previous measurements or values
motivated by theory.
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Law of Total Probability
Marginalization: The Evidence Term in Bayes’ Theorem
What is the meaning of the normalization or “evidence” term P(D|I)?

I Probability of the observation D, independent of the hypothesis H.
I H doesn’t affect P(D|I) so we marginalize it [1]:

P(D|I) = P(D, H|I) + P(D, H|I)
= [P(D|H, I) · P(H|I)] + [P(D|H, I) · P(H|I)].

We express P(D|I) in terms of the joint probability of D and the
mutually exclusive hypotheses H and H.

I Justification: logical negation, sum rule, and product rule.
I If there are M mutually exclusive (and exhaustive) hypotheses

then

P(D|I) =
M

∑
i=1

P(D|Hi, I)× P(Hi|I), with
M

∑
i=1

P(Hi| . . .) = 1
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Application of Bayes’ Theorem
Example
We have 3 coins, two fair (F) and one completely biased (B) toward
tails. We pick one coin and flip it 3 times, finding tails in all three
tosses, i.e., D = {T,T,T}. What is the probability that we picked the
biased coin?

P(B|D, I) =
P(D|B, I)P(B, I)

P(D, I)

=
P(D|B, I)P(B, I)

P(D|B, I)P(B, I) + P(D|F, I)P(F, I)

=
13 · (1/3)

13 · (1/3) + (1/2)3 · (2/3)
=

1/3
1/3 + 1/8 · 2/3

= 4/5

Similarly, you can calculate that P(F|D, I) = 1/5, or just infer it from
the sum rule because the fair and biased hypotheses are exclusive.
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Summary

I Sum Rule:

P(A|I) + P(A|I) = 1

∑ P(Hi|I) = 1 for exclusive Hi

I Product Rule:
P(A, B|I) = P(A|B, I)P(B|I)

I Bayes’ Theorem:

P(A|B, I) =
P(B|A, I)P(A|I)

P(B|I)
I Law of Total Probability:

P(A|I) = ∑
i

P(A, Bi|I) = ∑
i

P(A|Bi, I)P(Bi|I)
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More on Marginalization
Discrete “Events”

Given a set of mutually exclusive possibilities Yk, we can estimate the
probablity of some event X as

P(X|I) = ∑
k

P(X, Yk|I), where ∑
k

P(Yk|X, I) = 1

Example
Suppose there are 5 presidential candidates in an election, which we
represent by Yk with k = 1, . . . , 5. Then the probability that the
unemployment rate will go down next year (X) irrespective of who
wins the election is given by

P(X|I) =
5

∑
k=1

P(X, Yk|I)
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Marginalization
Continuum Limit

Suppose we don’t have a set of discrete events or hypotheses to test,
but an arbitrarily large set of propositions in a range of values? In this
case, we go to the M→ ∞ limit:

P(X|I) =
∫ ∞

−∞
p(X, Y|I)dY, where

p(X, Y|I) = lim
δy→0

P(X, y ≤ Y < y + δy|I)
δy

is called the probability density function (PDF) of X and Y ∈ [y, y + δy].

Example
We want to calculate the mass of a particle like the Higgs. We consider
a parameter space where mH may take on any continuous value inside
a physically motivated range.
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The Probability Density Function

I The PDF is a probability per unit volume (hence density).
I The quantity we want is a probability. To get it we calculate

volume integrals of the PDF.
I Obviously, it doesn’t have to be a joint distribution. The 1D case:

P(a ≤ X < b|I) =
∫ b

a
p(x|I)dx

I The PDF must be normalized since the values of x are mutually
exclusive: ∫ ∞

−∞
p(x|I)dx = 1

I The PDF contains all the information we need to make
probabilistic inferences about a parameter, event, or a hypothesis.
Its maximum gives the most probable value of a parameter.
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Comment: Marginalization vs. Projection
Marginalization eliminates an unwanted parameter from a joint PDF:

p(x|I) =
∫

p(x, y|I) dy (marginal PDF)

This is not the same as projection, in which you calculate the PDF of x
for some fixed y (see [2]), giving you a conditional PDF:

p(x|y, I) =
p(x, y|I)∫
p(x, y|I) dx

=
p(y|x, I)p(x|I)

p(y|I)
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Summary Statistics

Often we don’t have access to the
full PDF. Or we do, but we wish to
summarize it in just a few
numbers:

I Mean: “location”
I Variance: “width” or “spread”
I Mode: most probable value
I Median: central value
I Percentiles: rank/scoring
I Skew: asymmetry of PDF
I Kurtosis: “peakedness”

Can you think of a case where
these might not be sufficient?

0.0 2.5 5.0 7.5 10.0 12.5
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x|

µ
,σ

,I
)

Rayleigh Distribution

µ = 1, σ = 1
µ = 2, σ = 2
µ = 3, σ = 3
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Expectation Value
The Mean of a Distribution

I In terms of a PDF the expectation value or mean of a distribution
is given by

µ = 〈x〉 =
∫

x p(x|I)dx

I Other notations: E (x) and x̄. Read the latter as “x-bar” instead of
“not-x.” It isn’t logical negation.

I Typical usage: µ, 〈x〉, and E (x) refer to the expectation value of a
PDF, while x̄ refers to the mean of a set of measurements {xi}:

x̄ =
1
N

N

∑
i−1

xi

I Weighted mean: if not all data should contribute equally to the
sum,

x̄ =
∑N

i−1 wixi

∑N
i−1 wi
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Special Case
Cauchy/Lorentzian/Breit-Wigner Distribution

I The Cauchy distribution is
defined by the PDF

p(x|x0, Γ) =
1

2π

Γ
(x− x0)2 + (Γ/2)2

I If you try to calculate

〈x〉 =
∫ ∞

−∞
x p(x|x0, γ) dx

you will find that it diverges!
I This function describes

spectral lines and resonances,
so we do come across it.

−10 −5 0 5 10
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p(
x|

I)

Gaussian
Cauchy
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Variance
The Width of a Distribution

I In terms of a PDF the variance of a distribution is

σ2
x = var (x) = 〈(x− µ)2〉 =

∫
(x− µ)2 p(x|I)dx

I Note how variance is defined in terms of the mean µ; it measures
the spread of squared deviations of x about µ. This is more
obvious if you remember the definition of variance for a data set
{xi}:

var (x) =
1
N

N

∑
i=1

(xi − µ)2

I The square root of the variance, called the standard deviation or
RMS error σx, is a measure of the width of the PDF in the same
units as x.
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Calculating Variance
Known and Unknown Mean

I Note that the calculation of the variance of a data set will differ if
the mean is known vs. calculated from the data.

Known Mean

var (x) =
1
N

N

∑
i=1

(xi − µ)2

Unknown Mean

var (x) =
1

N− 1

N

∑
i=1

(xi − x̄)2

I If we compute x̄ from the data but use the formula on the left, our
estimate of the variance of the PDF will be too small (biased).

I Underestimating var (x), in this or any other way, can result in
serious mistakes. For example, for small N you could
underestimate the probability of observing a particular xi.
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Calculating Variance
“Online” Formula

I Suppose you have a detector that is measuring events xi in real
time. How do you calculate var (x) as the data are recorded?

I If you use the formula

var (x) =
1

N− 1

N

∑
i=1

(xi − x̄)2

then you need to estimate x̄ and then recalculate all of the
deviations from x̄, requiring a second pass through the data.
Inefficient!

I But, if you realize that

var (x) = 〈(x− µ)2〉 = 〈x2〉 − 〈x〉2 = x2 − x̄2

then you can write an algorithm that computes both the mean and
variance on the fly.
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Covariance
I The covariance of two quantities x and y is given by

σ2
xy = cov (x, y) = 〈(x− µx)(y− µy)〉

=
∫∫

(x− µx)(y− µy) p(x, y|I) dx dy

I As with variance, there is a nice simplification of covariance that
makes calculations easy:

cov (x, y) = 〈xy〉 − 〈x〉〈y〉

Clearly, σ2
xx = cov (x, x) = var (x) = σ2

x .
I Often (but not so much in physics) people use a dimensionless

version of covariance called the correlation coefficient,

ρ =
cov (x, y)√

var (x) var (y)
=

σ2
xy

σxσy
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Covariance
Independent x and y

Example
If x and y are independent, what is their covariance?

cov (x, y) = 〈xy〉 − 〈x〉〈y〉, but

〈xy〉 =
∫∫

xy p(x, y|I) dx dy

=
∫∫

xy p(x|I)p(y|I) dx dy

=
∫

x p(x|I) dx
∫

y p(y|I) dy

= 〈x〉〈y〉

So clearly cov (x, y) = 0 if x and y are independent.
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Examples of Covariance and Correlation

−2 0 2
x

−2

−1

0

1

2

y

ρ = −0.01

−2 0 2
x

−2

−1

0

1
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y

ρ = 0.91
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x

−2

−1

0

1

2

y

ρ = −0.98

−2 0 2
x

0

2

4

6

y

ρ = 0.03

I Correlations work as you
expect; they can be positive,
negative, or zero.

I Note: x, y independent will
have cov (x, y) = 0.

I Note: cov (x, y) = 0 does not
imply that x, y are
independent.

I Get comfortable with the
concept of covariance. It is
central to fitting and
parameter estimation.
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Higher-Order Summary Statistics

I The mean (“central value”) is the first moment of a PDF and the
variance (“spread”) is the second moment.

I The third moment (“asymmetry”) is called the skew, and it is
defined as

skew (x) = γx =
∫
(x− µx)

3 p(x|I) dx

=
1

Nσ3
x

N

∑
i=1

(xi − x̄)3

I The fourth moment is called the kurtosis.
I You could keep going like this, but eventually it becomes easier to

just characterize your distribution with the full PDF or at least a
compressed representation like a histogram.
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The Median

I The median is defined as the value in a PDF or a data set where
50% of the data are expected to be above or below the value.

I For an ordered data set xi of length N,

median (x) = x0.5 =

{
x(N+1)/2 N is odd
(xN/2 + xN/2+1)/2 N is even

I For a PDF of x, the median is given by the value x0.5 which
satisfies the condition

P(x ≤ x0.5|I) =
∫ x0.5

−∞
p(x|I) dx = 0.5

I This is literally the definition above expressed in terms of the
cumulative distribution P(x ≤ x0.5|I).
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The Cumulative Distribution Function

I The cumulative distribution function, or CDF, of x is the
probability of observing a value at or below some x. It is the
integral of the PDF.

−3 −2 −1 0 1 2 3
x
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PDF

−3 −2 −1 0 1 2 3
x

0.0

0.2

0.4

0.6
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1.0

∫ x −
∞

p(
x′
|I)

dx
′

CDF

I For a normalized one-dimensional PDF, the CDF will go to zero as
x→ −∞ and one as x→ +∞.
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Rank Statistics
Quantiles and Data Scoring

I Let’s extend the definition of the median. We define the quantile
xα as the value which satisfies the definition

P(x ≤ xα|I) =
∫ xα

−∞
p(x|I) dx = α

Example
The 25th percentile of a distribution x0.25 satisfies

P(x ≤ x0.25|I) =
∫ x0.25

−∞
p(x|I) dx = 0.25

I Quantiles are tail statistics; they tell us how probable it is to find x
in one of the tails of the PDF p(x|I). These are used all the time for
scoring.
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Why Use the Median?

I Aside from scoring data like exams, when is the median ever
useful?

I It is a measure of centrality that is less sensitive to the tails of of a
PDF than other measures like the mean.

Example

Let {xi} = 1, 2, 1, 1, 1, 2, 3, 1, 1000. The mean and median are given by

x̄ ≈ 112.4
median (x) = 1

I The mean in the example is sensitive to an outlier far from the
main cluster of values, while the median is not. It is said to be
“robust” against outliers.

I Question: how should we define an outlier?
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Decision Making in Physics
The 68-95-99 Rule
In physics we tend to express rare events in terms of the tails of the
Gaussian PDF

p(x|µ, σ, I) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

µ
− 3σ

µ
− 2σ

µ
− σ µ

µ
+

σ

µ
+

2σ

µ
+

3σ

x

0.0

0.1

0.2

0.3

0.4

p(
x|

I)

Normal Distribution

The “68-95-99” quantile rule:
I 68.27% of the data are within

1σ of the mean.
I 95.45% of the data are within

2σ of the mean.
I 99.73% of the data are within

3σ of the mean.
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Decision Making in Physics
The 5σ Rule
The “sigma” nomenclature is a nice shorthand for quantiles. For
example, “3σ” means something outside the central 99% of a
distribution (or upper/lower 99th percentile). So even when your PDF
isn’t Gaussian, everyone knows that “3σ” means the 99.7th percentile.

Example
The 5σ Rule: the gold standard for a discovery in HEP is a 5σ
deviation of data from the null hypothesis. For an upper-tail test, this
corresponds to

P(x ≤ µ + 5σ|I) =
∫ µ+5σ

−∞

1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

≈ 3 · 10−7

Why so strict? Why not use 1%, like in medical trials? We’ll come back
to this later in the course. You may find the answer... disturbing.
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The Mode

I The most probable value in a distribution (or most common value
in a data set), called the mode, is given by the maximum of the
PDF.

I The mode is a location parameter like the mean. Unlike the mean,
it does not account for the skewness of the PDF, so the mean may
perform better for asymmetric distributions.

I However, when we do parameter estimation, we are most
interested in the maximum (the mode) of the PDF and the shape
of the distribution around the maximum.

I All the information you need for parameter estimation is in the
PDF. Summary statistics are nice, but they can mislead you.
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Breakdown of Summary Statistics
Multimodal Distributions

Where would the mean be in this distribution? What is the variance?
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Would any or all of the moments of the PDF that we defined today be
sufficient to describe this?
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Binning of Data
Data Compression with Histograms

I Often you will want to bin your data, or you will be given binned
data.

I A histogram is a division of N data points into m subintervals or
bins of width ∆xi. A value x is sorted into bin i if x ∈ [xi, xi + ∆xi].
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I Normalization: N = ∑i ni · ∆xi, with ni the count in bin i.
I Note: data can also be weighted when filling the histogram.
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Data Compression with Histograms

I Histograms are a great way to summarize a large data set, but
never forget that they are a compression technique. When you bin
data you are throwing away information.
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I Ideally: bin edges are chosen such that the PDF changes very little
across the width of the bin.

I Typically the bin widths are set to the same value ∆x, but it’s
better to have equal counts per bin.
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Some Comments about Binning

I Seems like there is a bit of a “Goldilocks problem”:
I Bin too coarsely and you wipe out features in your data
I Bin too finely and you lose the benefits of compression, plus the

counts in each bin have bigger relative uncertainties

I Because you’re binning some random x, the counts in each bin are
themselves random numbers with some uncertainty.

I Most binned statistics, like the χ2 test, assume the uncertainty on
the counts in each bin is Gaussian. But if the counts in a bin are
low (< 10) then the distribution will actually be Poisson, violating
the conditions of your χ2 test

I There is a large literature on optimal binning of data. One scheme
now common in astronomy is called Bayesian Blocks [3]
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Summary

I The probability density function (PDF) is the probability per unit
volume of one or more parameters in a parameter space.

I The PDF contains all the information you need to know about a
parameter.

I Most often we are interested in the most probably location of a
parameter and its distribution about this point.

I There are various summary statistics we can use to capture the
essence of a distribution but there are pathological cases which
you encounter frequently in research.

I Binning data is an effective way of summarizing it in m values
(counts). Due to the freedom you have in choosing bins, you have
to be careful not to throw away too much information.
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Further Reading I

[1] D.S. Sivia and John Skilling. Data Analysis: A Bayesian Tutorial.
New York: Oxford University Press, 1998.

[2] Glen Cowan. Statistical Data Analysis. New York: Oxford
University Press, 1998.

[3] J.D. Scargle et al. In: Astrophys.J. 764 (2013), p. 167.

Segev BenZvi (UR) PHY 403 43 / 43


	Basics of Probability
	Laws of Probability
	Bayes' Theorem
	Marginalization
	The Probability Density Function

	Summary Statistics
	Mean (Expectation Value)
	Variance and Covariance
	High-Order Moments
	Ordered Rank Statistics
	The Cumulative Distribution Function
	Histograms


