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Monte Carlo Method

“Monte Carlo” methods are a broad set of techniques for calculating
probabilities and related quantities using sequences of random
numbers.

Developed by S. Ulam, J. von Neumann, and N. Metropolis at LANL
in 1946 to model neutron diffusion in radiation shields.

Method was called “Monte Carlo” after the Casino de Monte-Carlo in
Monaco.
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Simulation and Random Number Generation in
Physics

Some examples of problems where this technique is very popular:

I Simulate physical systems with models of noise and uncertainty
I Simulate data with known inputs to stress-test your analysis

(“data challenges”). Can be quite extensive...
I Perform calculations that cannot be done analytically or with a

deterministic algorithm. E.g., function minimization, or many
high-dimensional integrals

I Inverse Monte Carlo: estimate best-fit parameters with
uncertainties using many simulated data sets, avoiding explicit
and difficult uncertainty propagation

All this depends upon the generation of (pseudo-)random numbers.
This means you MUST understand how random number generators
(RNGs) work!
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Example Simulation from U of R Faculty
Physics of granular materials which become rigid with increasing
density (“jamming” transition) [1]:
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Example “Data Challenge”
The Laser Interferometer Gravitational Wave Observatory (LIGO) is
(in)famous for carrying out extensive data challenges [2]

Very important to conduct end-to-end “stress tests” in
background-dominated analyses. Above: fake binary merger injected
into LIGO data stream, 2011
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Generating Random Numbers

The Monte Carlo Method depends upon the generation of random
numbers with a computer.

But a computer is (supposed to be) a deterministic device: given a
fixed input and starting conditions, we should always get the same
output.

Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.
– John von Neumann

So we are actually talking about generating pseudorandom numbers.

To understand Monte Carlo methods, we MUST understand how
pseudo random number generators (PRNGs) function.
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Pseudo-Random Numbers

I We need to generate sequences of random numbers to model
noise and uncertainty.

I Computers are not random, they are deterministic. So how do we
get random sequences of numbers?

I Answer: we don’t. We produce pseudo-random sequences and
try to use them in clever ways.
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Pseudo-Random Number Generators (RNGs)
Middle-Square Method

Arithmetical approach to
producing a sequence of “random”
numbers:

I Start with a “seed” value
containing n digits

I Square the number to get a
new value with 2n digits; if the
result has less than 2n digits,
pad it with leading zeros

I Take the central n digits as the
output

I Use the output as the next
“seed” value

Note: this is just a toy example!
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Pseudo-Random Number Generators (RNGs)
Linear Congruential Generator

I The pseudo-RNG used in the rand() function of the C standard
library is a linear congruential generator (LCG)

I A sequence of values xi ∈ [0, m− 1] is generated using the
recurrence relation

xn+1 = (axn + c) mod m

I The period of the RNG, defined as the longest number of steps
before the sequence starts repeating, is at most 2m.

I Note: if m is an unsigned integer (uint32_t on most systems) then
the period will be at most 232 ≈ 4× 109. (Note: 264 ≈ 1018)

I For many choices of m, the period will be much less than 2m.
I Theorem: the full period of the LCG is achieved iff c and m are

co-prime, a− 1 is divisible by all prime factors of m, and a− 1 is a
multiple of 4 if m is a multiple of 4 [3].
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“Seeding” the RNG

I Note that pseudo-RNGs are deterministic. If you always use the
same x0, a value known as the seed, you always get the same
sequence.

I The choice of seed can affect the performance of the LCG; i.e., a
poor choice could lead to a period� m.

I Determinism is great for debugging, but if you generate the same
numbers over and over you aren’t getting a pseudo-random
sequence

I Common mistake 1: accidentally hardcoding the seed into your
simulation code

I Common mistake 2: failing to save the seed you used, which
makes it hard to regenerate the sequence later for checks
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Choosing the Seed
I Solution 1: use system clock to choose x0. On UNIX-like

machines, time(0) gives seconds since 00:00 UT, 1 Jan 1970 (UNIX
epoch). Requires caution when running parallel jobs!

I Solution 2: use the reservoir of random bits in the computer’s
entropy pool, accessible in /dev/random. Could be noise
measured in a resistor, or clock drift [4], or a peripheral device
connected to a source of randomness (e.g., a radioactive source)
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Known Issues with the LCG

I The LCG is fast but will
produce subtle long-range
correlations between values in
the sequence.

I Ex.: if you generate
n-dimensional points with the
LCG, the points will lie on
(n!m)1/n hyperplanes [5].

I Clearly random numbers
shouldn’t do that.

I Could this affect your
simulation? Maybe. Depends
on your application.
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Alternatives to the LCG
Mersenne Twister

I A popular RNG currently in use is an algorithm called the
Mersenne Twister [6], which uses the matrix linear recurrence
relation

xk+n = xk+m ⊕ (xu
k | xl

k+1)A, where A =

[
0 1w−1

aw−1 (aw−2, . . . , a0)

]
,

|means bitwise OR, and ⊕means bitwise XOR.
I For n = degree of recurrence, w = word size in bits, and

0 ≤ r ≤ w− 1 = bits in lower bitmask, the algorithm requires that
the period length

2nw−r − 1

is a Mersenne prime – a prime number of the form 2n − 1.
I The MT implementation in Python and C++ (Boost, ROOT) has

period 219937 − 1 ≈ 4× 106001.
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Aside: Basic Bit Manipulation
Bitwise OR and XOR

Bitwise OR can be understood by writing its arguments in binary
notation. Example: let

x = 5
binary−−−→ 101 ≡ 1 · 22 + 0 · 21 + 1 · 20

Then
x | 2 binary−−−→ 101 | 010 = 111 decimal−−−−→ 7

Bitwise XOR works the same way, except that its output is false if two
bits are set to 1:

x = 5
binary−−−→ 101

xˆ2
binary−−−→ 101 | 010 = 111 decimal−−−−→ 7

xˆ4
binary−−−→ 101 | 100 = 001 decimal−−−−→ 1
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Aside: Basic Bit Manipulation
Bit Shifting

Bit shifting is equivalent to multiplication by powers of 2 (left shift) or
division by powers of 2 (right shift):

x = 5
binary−−−→ 101

The statement x� y shifts the bits of the number stored in x left by y
places, padding the least significant bits with zeros:

x� 2
binary−−−→ 10100 = 24 + 22 decimal−−−−→ 20 = 22 · 5

The statement x� 1 shifts the bits of the number stored in x right by y
places, dropping the least significant bits as needed:

x� 1
binary−−−→ 1010 = 23 + 21 decimal−−−−→ 10 = 20/21
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Alternatives to the LCG
Xorshift Algorithms

I Another class of RNG is called Xorshift (“X-OR-shift”), which
depends on a combination of XOR (exclusive-OR) and bit shift
operations [7].

I These are extremely fast because XOR and shifting are simple
CPU instructions. Example: a 2128 − 1 period algorithm

#include <cstdint>

// State variables; start s.t. not all = 0
uint32_t x, y, z, w;

uint32_t xorshift128() {
uint32_t t = x ^ (x << 11);
x = y; y = z; z = w;
return w = w ^ (w >> 19) ^ t ^ (t >> 8);

}
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Human-Generated Random Numbers

I How good are you at generating random numbers?

Example
Without over-thinking this, take a minute to write down as many
random values between 1 and 100 as you can.

I What does the distribution of numbers look like?
I How would you tell if this is really a random sequence? Is it easy

to predict parts of the sequence (auto-correlation)?
I Do we need to specify more information to answer this question?
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Benford’s Law
I If you are like most people, you didn’t repeat numbers enough

(remember the demon in the cartoon...)
I Also, your “random” sequence is probably uniform between 1

and 100
I However, in many sources of data the values follow a distribution

known as Benford’s Law: 1 is the leading digit 30% of the time, 2
is the leading digit 18% of the time, etc.

I If you pick a number randomly from the logarithmic number line,
it will roughly follow Benford’s Law

I This rule can be used to detect fraudulent numbers in elections,
accounting (stock prices), and scientific papers.

Segev BenZvi (UR) PHY 403 20 / 36



Table of Contents

1 Simulation and Random Number Generation
Simulation of Physical Systems
Creating Fake Data Sets for Stress Tests

2 Pseudo-Random Number Generators (PRNGs)
Simple Examples: Middle-Square and LCG
Seeding the RNG
Robust Examples: Mersenne Twister and Xorshift
Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
Inversion Method
Acceptance/Rejection Method
Generating Gaussian and Poisson Random Numbers

Segev BenZvi (UR) PHY 403 21 / 36



Generating Arbitrary Random Numbers

I All of the RNGs we have discussed will produce uniformly
distributed random numbers:

I LCG generates numbers between [0, m]
I MT generates numbers between [0, 1]

I This is great for situations when you want a uniform distribution,
but that does not correspond to most physical situations

I Luckily, there are several ways to convert a uniform distribution
to an arbitrary distribution:

1. Transformation or inversion method
2. Acceptance/rejection method

I The transformation method is generally the most efficient
technique, but it is only applicable in cases where the PDF is easy
to integrate and the CDF can be inverted

I Acceptance/rejection is less efficient but works for any PDF you
will want to use for random draws
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Transformation/Inversion Method

−3 −2 −1 0 1 2 3
x
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0.6

0.8

1.0

∫ x −
∞

p(
x′
|I)

dx
′

uniform draw
u ∈ [0, 1] here

invert CDF
to get x here

CDF Given a PDF p(x|I) and its CDF
F(x) =

∫ x
−∞ p(x′|I) dx′:

1. Generate a uniform random
number u between [0, 1]

2. Compute the value x s.t.
F(x) = u

3. Take x to be the random draw
from p(x|I)

In other words, from u and the
invertible CDF F(x), the value
x = F−1(u) is distributed according
to p(x|I).
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Transformation/Inversion Method
Exponential Distribution

Example
The PDF of the exponential distribution is

p(x|ξ) = 1
ξ

e−x/ξ

and the CDF is

F(x) = P(X ≤ x|ξ) =
∫ x

0

1
ξ

e−x′/ξ dx′ = 1− e−x/ξ

Therefore, given u ∈ [0, 1] we can generate x according to p(x|ξ) by
inverting the CDF:

u = F(x) = 1− e−x/ξ

x = F−1(u) = −ξ ln (1− u) = −ξ ln u
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Limits of the Inversion Method

I Inversion is very efficient and great if you can invert your CDF
I Unfortunately this condition is not fulfilled even for many basic

1D cases

Example
The CDF of the Gaussian distribution is

F(x) =
∫ x

−∞
p(x|µ, σ) =

1
2

[
1 + erf

(
x− µ

σ
√

2

)]

The error function cannot be expressed in closed form, though there
are numerical approximations to erf and erf−1 in scipy.

I A trick for complicated PDFs: express the CDF as a tabulated list
of values (u, F(x)), “invert” it, and interpolate.
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Acceptance/Rejection Method

Very old technique; modern form
due to von Neumann. AKA “hit
and miss,” it generates x from an
arbitrary f (x) using a so-called
instrumental distribution g(x),
where f (x) < Mg(x) and M > 1 is
a bound on f (x)/g(x).

1. Sample x from g(x) and
u ∈ [0, 1].

2. Check if u < f (x)/Mg(x)
I Yes: accept x
I No: reject x, sample again

Very easy to implement, no limits
on f (x).

−1 0 1
x

−1.0

−0.5

0.0

0.5

1.0

y
Calculation of π: uniformly
generate (x, y) pairs in box, count
up points inside the circle.
π ≈ 4Ncircle/Nbox.
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Buffon’s Calculation of π
I An early variant of the Monte Carlo approach can be seen in

Buffon’s Needle (1700s), a method of calculating π

Drop a needle of length L dropped on a floor with parallel strips of
width d. What is the probability the needle will cross a line if L < d?

I x is center distance to nearest line; x ∼ U(0, d/2)
I θ is angle between needle center line: θ ∼ U(0, π/2)
I Needle crosses line if x ≤ L sin θ/2. Joint PDF:

P =
∫ π/2

0
dθ
∫ L sin θ/2

0
dx

4
πd

=
2L
πd
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Acceptance/Rejection Method
Sampling from a 1D Distribution

Example

Suppose f (x) = 3
8 (1 + x2) for −1 ≤ x ≤ 1.

(Aside: do you recognize this distribution?)
I Generate random x ∈ [−1, 1] and y ∈ [0, 0.75].
I If y < f (x), populate the histogram with x.
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Acceptance/Rejection Method
Sampling from a 2D Distribution

Example
Suppose we want to sample from the 2D angular distribution

1
N

dN
d cos θdϕ

= (1 + cos θ)(1 +
1
2

cos 2ϕ)

Generate triplets (x, y, z), where x = ϕ ∈ [0, 2π], y = cos θ ∈ [−1, 1],
and z ∈ [0, 3], keeping (x, y) if z < f (x, y):
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ϕ
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sθ

Angular Distribution

0 π/2 π 3π/2 2π
ϕ

−1.0

−0.5

0.0

0.5

1.0

co
sθ

1,000,000 Events
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Limitations of Acceptance/Rejection

Ideally you know fmax or normalize f (x) = p(x|I) to have a maximum
of 1.

I If not, you’ll have to pre-scan the parameter space in advance.
If f (x) ranges over many orders of magnitude, acceptance/rejection
can be very inefficient as you’ll waste lots of time in low-probability
regions. Possible approaches:

I Subdivide x into ranges with different fmax.
I Use importance sampling, where you generate random numbers

according to a function that evelopes the PDF you really want to
sample

Example implementation: vegas package in Python, an
implementation of the adaptive Monte Carlo VEGAS
multi-dimensional integration algorithm [8]
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Generating a Gaussian Random Number

How would you generate a Gaussian random number?

1. You can use inversion if you can numerically estimate erf−1.
2. You can use the acceptance/rejection method if you don’t mind

wasting some calculations.
3. You can exploit the Central Limit Theorem. Sum 12 uniform

variables, which approximates a Gaussian of mean 12× 0.5 = 6
and a variance of 12× (1/12) = 1. Subtract 6 to get a mean of
zero. This takes even more calculation and isn’t exact.

4. Use the polar form of the binormal distribution

p(x, y|I) = 1
2π

exp
{
−1

2

(
x2 + y2

)}

to generate two Gaussian random numbers at once.
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Box-Müller Algorithm

Re-express the 2D Gaussian PDF in polar coordinates:

p(x, y|I) dx dy =
1

2π
exp

{
−1

2

(
x2 + y2

)}
dx dy

=
1

2π
exp− r2

2
r dr dϕ

Then generate an exponential variable z = r2/2, change variables to r,
and generate a uniform polar angle ϕ:

I z = − ln u1 for u1 ∼ U(0, 1)
I r =

√
2z

I ϕ = 2πu2 for u2 ∼ U(0, 1)
Then x = r cos ϕ and y = r sin ϕ are two normally-distributed random
numbers. Very elegant! But due to the calls to trascendental functions
(sqrt, log, cos, etc.), numerical approaches could be faster in practice...
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Generating a Poisson Random Variable

The best way to generate a Poisson random variable is to use inverse
transform sampling of the cumulative distribution.

I Generate u ∼ U(0, 1)
I Sum up the Poisson PDF p(n|λ) with increasing values of n until

the cumulative sum exceeds u:

sn =
n

∑
k=0

λke−λ

k!
, while sn < u

I Return the largest n for which sn < u.

This will work quite well until λ gets large, at which point you may
start experiencing floating-point round-off errors due to the factor of
e−λ. But for large λ you an start to use the Gaussian approximation.
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Monte Carlo Integration
I We can also solve integrals (esp. in several dimensions) with

Monte Carlo. Mathematically, we approximate the integral by the
average of the function of the interval of integration:

I =
∫ b

a
f (x) dx ≈ (b− a)E (f (x))

I We take discrete samples of f and let the MC estimate converge to
the true integral as the number of samples gets large:

E (f (x)) =
1
N

N

∑
i=1

f (ui)→
1

b− a

∫ b

a
f (u) du

I = IMC =
b− a

N

N

∑
i=1

f (xi)

I Error on the result given by the Central Limit Theorem:

σ =
√

var (f )/
√

N ∝ 1/
√

N.
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