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Last Time: The Odds Ratio

To select between two models, it is useful to calculate the ratio of the
posterior probabilities of the models. This is called the odds ratio:
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The first term is called the Bayes Factor [1, 2] and the second is called
the prior odds ratio. Interpration:
» Prior odds: the amount by which you favor M; over M; before
taking data. There is no analog in frequentist statistics.
» Bayes Factor: the amount that the data D causes you favor M;
over M;. Frequentist analog: likelihood ratio (but frequentists
can’t marginalize nuisance parameters)
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Last Time: Occam Factors

» We can express any likelihood of data D given a model M as the
maximum value of its likelihood times an Occam factor:

p(D|M, I) = ﬁmaxQG

» The Occam factor corrects the likelihood for the statistical trials
incurred by scanning the parameter space for 6.

» Occam’s Razor: when selecting from among competing models,
generally prefer the simpler model

» Statistical Trials: it becomes harder to reject the “null hypothesis”
when the number of hypotheses in a test becomes large.
Example

You have a histogram and look for a spike in any one bin. The
look-elsewhere effect: any bin could be a background fluctuation.
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Principle of Indifference

As a general rule, we want priors that do not inadvertently push us
toward a result. We want non-informative priors. Principle of

Indifference: given n > 1 mutually exclusive and exhaustive
possibilities, each should be assigned a probability equal to 1/n.
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Principle of Indifference

As a general rule, we want priors that do not inadvertently push us
toward a result. We want non-informative priors. Principle of
Indifference: given n > 1 mutually exclusive and exhaustive
possibilities, each should be assigned a probability equal to 1/n.

Example

Drawing from a deck of cards, we apply the principle of indifference
and assume the probability of selecting a given card is 1/52.

Example

Rolling dice with n faces, we assume the die lands on one face
(exclusive possibility) with probability 1/6.

Example

Statistical mechanics: any two microstates of a system with the same
energy are equally probable at equilibrium.
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Principle of Indifference

Continuous Location Parameter

» Consider an event that we locate with respect to some origin (a
“location parameter”

» Example: we are interested in p(X|I), where X ="the tallest tree in
the woods is between x and x 4 dx.”

» In the problem, x is measured with respect to some origin. What if
we change the origin so that

x—x =x+c

> In the limit of complete ignorance, our choice of prior must be
completely indifferent to shifts in location. This implies

p(X|I) dX = p(X/‘I) ax' = p(X/‘I) d(X+c) =pX'|I)dX
. p(X|I) = constant
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Uniform Prior

Continuous Location Parameter

» If we have upper and lower bounds on x (we know the
dimensions of the woods), then

1
p(X|I) = constant = ————,

Xmax — Xmin

the uniform prior we have already used a few times.

» If the bounds Xpmin and xmax are not known, then technically p(X|I)
is not normalized. It is called an improper prior.

» Note 1: improper priors can be used in parameter estimation
problems, as long as the posterior distribution is normalized.

» Note 2: improper priors cannot be used in model selection
problems, because the Occam factors depend on knowing the
prior range for each model parameter.
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Principle of Indifference

Continuous Scale Parameter

» Consider a problem where we are interested in the mean lifetime
of a particle. Lifetime is a scale parameter because it can only have
positive values.

» We are interested in p(7 |I), where 7 ="the “mean lifetime is
between T and T + dt.”

> In the limit of complete ignorance, our prior must be indifferent to
changes in scale B, e.g., if we change our time units T — 7/ = BT:

p(TID AT = p(T'|) dT" = p(T'|1) d(BT) = pp(T'|I) AT
If we represent the PDF by ¢(7), then

g(1) = g(t’) = pg(pr) —> g(r) = constant/
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Jetfreys Prior
Continuous Scale Parameter
» Since g(7) o« 1/7, we must also have

1
p(TID o

» This form of the prior is called the Jeffreys prior [1].
» If we have upper and lower bounds on 7 then

1
TI) =
p( l ) Tln (Tmax/Tmin)
> The Jeffreys prior is very convenient for problems in which we are
ignorant about scale. It provides logarithmic uniformity via equal
probability per decade. Using a uniform prior in this case would
cause you to weight your PDF toward the highest decade

Segev BenZvi (UR) 11/ 36



Modified Jeffreys Prior

Modified Jeffreys Prior

|

\ Unmodified Jeffreys prior -

Probability
©

» The Jeffreys prior is not
normalizable if a scale parameter
like T can be zero.

» Alternative (from S. Oser): the
modified Jeffreys prior, which
becomes uniform for T < a:

2F ‘ E 1

Modified Jeffreys prior I —
v “QIT N P(TID (T+a)In((a+ Tmax)/a)
010 ; ” o Hi.(.) 5 ...;.6 : .......1 . ..m10
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Caution: Parameterization Matters

Example from S. Oser
Two theorists predict the mass of a new particle:
1. A: There should be a new particle whose mass is between 0 and 1

in rationalized uints. Having no other knowledge about the mass,
assume it has equal chance of being between 0 and 1: p(m|I) = 1.

2. B: There is a particle described by a free parameter y = m?. The
true value of y must lie between 0 and 1, but otherwise having no
knowledge about it, p(y|I) = 1.

Both statements express ignorance about the same theory, but with
different parameterizations. By the transformation rule,

p(ylD) = p(ml1) \";’; - ;y

Uh oh: transformation of variables makes a uniform prior
non-uniform.
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Estimators

» We have seen how the PDF encodes what we want to know about
a parameter given data D and relevant background information I.
» An estimator is a summary of this distribution
» Could be a parameter of the PDF. E.g., p for a binomial distribution
» Could be a property of the distribution, like the mean
You have total freedom to make up any estimator you want, but
you’ll want to report two numbers:

1. The best estimate itself
2. A measure of the reliability of the estimate

v

» Question: what do we mean by “best” estimator?

» Question: what do we mean by the “reliability” of the estimator?
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Bayesian vs. Frequentist Interpretations

» Bayesian: given D, the uncertainties tell us that the true value of
the parameter lies within the ellipse centered on the observation
with some probability

> Frequentist: given the true value of the parameters, the
observation lies within an error ellipse centered on the true value

with some probability
Bayesian Frequentist
92 true 92 observed
observed true
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What is a Best Estimator?

> Let’s answer the question of what defines a best estimator.

» Intuitive: it should be where the posterior PDF p(x|D, ) is a
maximum, meaning

dp

dx

For this to be a maximum, we also require that

=0

b

dzp

@ <0

%

» If X gives the best estimator, then how do we define the reliability
of the estimator?

» Look at the behavior of the PDF in a small region around the peak.
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Reliability of an Estimator?
> Let’s look at the Taylor expansion of p about %, or better yet, Inp:
L=1Inp =1Inp(x|D,I)

» We use the logarithm because p will often be a “peaky” function
of x near %. L varies more slowly and is a monotonic function of p.

» Taylor expanding L about %, we get

1d%L

(s L a2
L_L(x)+2dx2 (x—2%)"+...

X

» The first term is a constant. The linear term vanishes (we're at the
maximum). So the quadratic term dominates, and
1d°L
(=57

p(x|D,I) ~ A exp [dez

X
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Reliability of an Estimator?
» Compare the Taylor-expanded posterior PDF

1d%L (re &)2}

p(x|D,I) =~ A exp {EW

x

to the Gaussian

202

_ 1 (e —p)?
p(xlp,0*) = 20 &P [ ]

» We can identify the width of the Gaussian as

2L\ V2
o= ()
X

Cdx?
with d2L/dx* < 0 (we're at the maximum). Hence, we express the
parameter as

x=Xx=xo0,
where % is the best estimate and ¢ is its reliability.
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Accuracy and Precision
Frequentist Aside

» It is useful to think of an estimator in terms of accuracy and
precision

» Accuracy: how close is the estimator to true value? (Systematics)

» Precision: how clustered is the estimator about a central value?
(Variance/Statistics)

©@OO®

High Accuracy Low Accuracy High Accuracy Low Accuracy
High Precision High Precision Low Precision Low Precision
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Consistency and Bias

Caution: Frequentist Concept

> In the context of a sample of N measurements, we say that an
estimator of 6, called 0, is consistent if

lim P(|§ — 0] >€) =0, Ve>0
N—co
Le., § converges to 6 in the large N limit.
» We call an estimator unbiased if the bias b

b(@) =E(0) — 6

is zero.

» An estimator can be biased even if it is consistent. If § — 6 for an
infinite set of measurements in one experiment, it is not
necessarily true that § — 6 in an infinite set of experiments with a
finite number of measurements.
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Mean Squared Error (or Deviation)

» It is helpful to think of bias as a systematic error which does not
improve with more data

» Another popular measure of the quality of an estimator is the
mean squared error, defined as

d=MSE =E((§ —6)?)
=E((0—-E(0)*) +(E(6) -0)
= var (0) + b?

> Le., the mean squared error (MSE) is the sum of the variance and
the square of the bias.

» Classical interpretation: since the variance is the square of the
uncertainty in the estimator, the MSE is the quadrature sum of
statistical and systematic uncertainties.

» Root mean square (RMS) is defined as v MSE.
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What Makes a Good Estimator?
Let’s define the three properties we expect from a good estimator.
1. Consistent: a consistent estimator will tend to the true value as
the amount of data approaches infinity:

lim 6 = 6

N—oo

2. Unbiased: the expectation value of the estimator is equal to the
true value, so its bias b vanishes:

b:<é>—9:/dxp(xye>é(x)—e:o

3. Efficient: the variance of the estimator is as small as possible

(we’ll see how small when we discuss the method of maximum
likelihood):

var ( /dxp x|0) (B(x) — 0)?
MSE = ((6 — 6)?) = var () + b*

It is not always possible to satisfy all three requirements.
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Case Study: Efficiency Uncertainty
Example

Suppose you use simulation to determine a selection efficiency: n out
of N events pass some cuts. What is the selection efficiency € and its
uncertainty?

This is a binomial process: fixed trials N, fixed successes n, probability
of success €. Therefore,

p(n|N,e) x€"(1—e)N™"
and

L =1Inp = constant +nlne + (N —n)In (1 —¢)
dL._ n N-n
de € 1—¢
AL n N-—n

de2 2 (1—e)?
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Case Study: Efficiency Uncertainty
Example

For the optimal value of €, dL/de = 0:

d_L
de

> o
I

This is a pretty intuitive result: the best estimate of the efficiency is just
n/N. Mixing in a frequentist concept: is it biased?

E (n) _ Ne B
N =N €70

So € is an unbiased estimator.
What about its uncertainty?
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Case Study: Efficiency Uncertainty
Example

The estimated variance is given by

=il
2= — dZ_L
de?|,

After substituting é = n/N and combining terms, this reduces to

L
2|, ” “ei-9

o é(1—-¢é) n(N—-n)
0= ~ =

The expectation of &2 is, after some more algebra,

B(62) = ;]r 2 (ehghiie)

v
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Asymmetric PDFs

» What happens when we have a very asymmetric PDF? In this case
the expansion about the maximum may not be so reasonable.

A

prob(X |{data},l)

» This is where the concept of confidence intervals (or “credible
regions” for a Bayesian) come in. We define

X

p(x1 <x <x|D,I) = / 2p(x|D,I) dx ~ a,

X1
where a = 0.68 (for example), and identify x; and x».
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Multimodal PDFs

» What happens when we the PDF is multimodal? Can we even
describe a “best parameter” and its uncertainty properly?
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Multimodal PDFs

» What happens when we the PDF is multimodal? Can we even
describe a “best parameter” and its uncertainty properly?

> You could try to summarize the posterior using > 2 best estimates
and their error bars, or some kind of disjoint confidence interval.

» Alternatively: cut your losses and just report the full posterior
PDE.
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Gaussian Uncertainties

» Suppose we are measuring values x = {x;} drawn from a
Gaussian distribution of mean y and variance 0.

For today, assume ¢ is known but y is not. How do we estimate y
given the data?

v

v

Starting from Bayes’ Theorem,

p(ulx, 0%, 1) o< p(x|p, 0%, 1) p(p|o®,1)

Likelihood: If the measurements x; are independent, then

a 1 (xi — p)?
2 1y . 2 1y — _y ' 7
plxlp, o, 1) =T Tp(uli, 0% 1) = oy exp ( L0

v

i=1 i

v

Prior: y is a location parameter, so we’ll use a uniform prior

1

Hmax — Hmin

p(ulo?, 1) =

which vanishes outside X € [{min, fmax]-
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Gaussian Uncertainties
Estimate of the Mean

> Asin the earlier examples, let’s maximize the logarithm of the
posterior PDF to get the best estimate for y:

N 2
_ 2 . (xi — )
L =Inp(u|x,0°,1I) = constant izz 1 g2

» Differentiating, we have

d_L _ixi_‘uzo

dyﬁ_izl o?
1 N

=Y x|
N &~

So the best estimate of y is the arithmetic mean of the
measurements, independent of the spread given by ¢.
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Gaussian Uncertainties
Uncertainty of the Mean

» The uncertainty of the mean comes from the second derivative:
d’L i 1 N
J2l T T 2T T2
du P o o

i=1

» Therefore, our best estimate and uncertainty on the mean is
o
=0+ —
K=F vVN

v

We have derived the expression often referred to as the “error on
the mean,” including the rule that the uncertainty decreases as
1/VN.

The only requirement is the validity of the quadratic expansion of
the posterior PDF, which is exactly true for the Gaussian.

This rule applies often thanks to the tendency of additive sources
of noise to look Gaussian (Central Limit Theorem)

\{

\{
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Different-Sized Error Bars
Weighted Mean

» What happens if the uncertainties in each x; differ? As long as the
source of uncertainties is Gaussian, then

p(x|]/l,012,1) = Ili[p(xi|]’llgi211) = #exp _ZM
i=1 V2r|Z| 207

where X is the diagonal covariance matrix of the {x;}.
» Taking the logarithm and differentiating gives

N (v 1)\2
Lzlnp:constant—ZM
iz 20
dL Noxi—pu
du :Z 5 =10
Hlg  iZo 9
N N N N
p=Y x/0f /Y 1/07 =Y xw [} w
i=1 i=1 i=1 i=1
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Different-Sized Error Bars
Weighted Error on the Mean

» For the uncertainty on the mean, we have

L
dVZﬁ So?

N -1/2
'.y:ﬁi<2wi> , wi=1/07
i=1

» So for the case of different uncertainties on each measurement x;,
the best estimator of the mean is the arithmetic sum of the data
inversely weighted by the uncertainties.

» This makes a lot of sense; we want the data points with the
biggest uncertainties to contribute the least to the sum
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Principle of Indifference

Uniform and Jeffreys Priors

» Principle of Indifference: given n > 1 mutually exclusive and
exhaustive possibilities, each should be assigned a probability
equalto1/n.

» Matches our intuition, and we’ve been applying it throughout the
course. We can also use it to derive PDFs.

» Uniform prior is appropriate for a location parameter:

1
X|I) = constant = ———,
P( ‘ ) Xmax — Xmin

» Jeffreys prior is appropriate for a scale parameter:

1
xIln (xmax/xmin)

p(X|I) =

It gives equal probability per decade.
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Summary

» We can identify the best estimator of a PDF by maximizing it, so
that
dp

dx =0

b

» We assessed the reliability of the estimator by Taylor expanding
L = Inp about the best value:
> -1
&

2 d’L

0 =\—-5

dx?

» This only works when the quadratic approximation is reasonable.
It may not be:

1. Asymmetric PDF: better to use a confidence interval
2. Multimodal PDF: no clear best estimate; report full PDF

» Frequentists: desire efficient, unbiased, and consistent estimators.
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